Химия радиоматериалов, лекции Кораблевой А.А. (ГУАП) - Химия - Скачать бесплатно
Вступление
Для создания электронных приборов необходим целый арсенал материалов и
уникальных и тонких технологических процессов. Современная радиотехника и
особенно высокочастотная техника (радиосвязь), приборы и аппаратура
радиоэлектроники требуют большого количества конструкционных и специальных
радиотехнических материалов, свойства которых должны удовлетворять самым
разнообразным условиям их применения. Под радиотехническими материалами
принято понимать материалы, которые обладают особыми свойствами по
отношению к электрическому, магнитному и электромагнитному полям. Они
разделяются на 4 группы:
1) проводники
2) диэлектрики
3) полупроводники
4) магнитные материалы
Требования, которым должны удовлетворять радиоматериалы:
1) обладать высокими электрическими (магнитными) характеристиками.
2) нормально работать при повышенных, а иногда при низких температурах.
3) иметь достаточную механическую прочность при различных видах нагрузки,
устойчивостью к тряске, вибрации, ударам…
4) обладать достаточной влагостойкостью, химической стойкостью,
стойкостью к облучениям.
5) не иметь заметно выраженного старения.
6) удовлетворять технологичности, т.е. сравнительно легко обрабатываться.
7) быть недорогими и не дефицитными.
Глава 1
Классификация и основные сведения о проводниковых материалах
1.1 Виды проводников
Проводниками электрического тока могут служить твёрдые тела,
жидкости, а при соответствующих условиях и газы
Твёрдыми проводниками являются металлы, металлические сплавы и
некоторые модификации углерода. За последнее время получены также
органические полимеры. Среди металлических проводников различают:
а) материалы, обладающие высокой проводимостью, которые используют
для изготовления проводов, кабелей, проводящих соединений в микросхемах,
обмоток трансформаторов, волноводов, анодов мощных генераторных ламп и т.д.
б) металлы и сплавы, обладающие высоким сопротивлением, которые
применяются в электронагревательных приборах, лампах накаливания,
резисторах, реостатах.
К жидким проводникам относятся расплавленные металлы и различные
электролиты. Как правило температура плавления металлов высока за
исключением ртути (-39°C), галлия (29,8°C) и цезия (26°C). Механизм
протекания тока обусловлен движением свободных электронов. Поэтому металлы
называются проводниками первого рода. Электролитами или проводниками
второго рода являются растворы солей, кислот и щелочей. Все газы и пары, в
том числе пары металлов при низкой напряженности не являются проводниками.
При высоких напряженностях может произойти ионизация газа, и ионизированный
газ, при равенстве числа электронов и положительных ионов в единице объёма,
представляет собой особую равновесную проводящую среду, которая называется
плазмой.
1.2 Кристаллическая структура металлов
Металлы имеют кристаллическое строение, но есть и аморфные. В
сплошном куске металла кристаллы его расположены случайным образом. Их
очертания имеют неправильную форму, но путём медленного выращивания из
расплавленного металла можно получить крупный кристалл, который называется
монокристаллом.
Метод Чохральского: получение монокристалла и очистка металла.
Медленно вытягивают из расплава монокристалл, примеси остаются в расплаве.
Монокристалл отличается мягкостью, но для его разрыва требуется большее
усилие чем для разрыва металла.
Возможны 6 вариантов кристаллических решеток металлов:
1) простая кубическая Kr = 6.
2) объёмно центрированная кубическая Kr = 8; Li, Na, K, Rb, Cs, Fe.
3) кубическая гранецентрированная, Kr = 12; Cu, Ag, Au, Cr, Mo, W,
Ca, Ni, Pt, Pd, Co, Ro, Ir, Rh, Fe.
4) октаэдрическая структура Kr = 6.
5) тетраэдрическая Ge, Pb, ?-Sn
6) гексагональная Mg, Be, Cd, Ru, Os.
Решетки металлов, принадлежащих одной подгруппе периодической системы,
обычно являются одинаковыми. Железо может кристаллизоваться в
гранецентрированную и в объёмно центрированную.
1.3 Металлическая связь
Как особый вид связи осуществляется в жидком и твёрдом
(кристаллическом) состояниях (имеется также и аморфное состояние металлов).
В парообразном состоянии металлические атомы имеют ковалентную связь (т.е.
общую электронную пару) и, следовательно, являются диэлектриками.
Элементарная решетка лития – кубическая объёмно центрированная,
следовательно, надо осуществить связь по крайней мере в элементарной
решетке Li9, а валентный электрон всего один и он должен находиться между
всеми восемью «соседями», поэтому он должен быть делокализован. МВС (метод
валентных связей) не описывает металлическую связь в кристаллах, она может
быть описана только методом молекулярных орбиталей (ММО) т.е. зонной
теорией твёрдого тела. Согласно зонной теории для всех металлов ширина
запрещённой зоны = 0, например: Na…3s1, Mg…3s2, Al…3s23p1.
Na
В зоне столько уровней, сколько атомов объединилось в кристалле, на каждом
уровне максимум 2 электрона. 100 атомов – 100 уровней, на которых может
быть 200 электронов, а есть только 100 электронов, следовательно, для Na и
других его аналогов, у которых содержится 1 электрон на валентном уровне,
валентная зона на половину заполнена, а следовательно, внутри валентной
зоны электрон может менять энергию, а значит участвовать в проводимости.
Значит валентная зона одновременно является зоной проводимости и ширина
запрещённой зоны для таких металлов = 0.
Mg
Содержит 100 атомов, следовательно, 100 уровней, может быть 200 электронов,
есть 200, следовательно, 3s зона (ВЗ) полностью заполнена, 3p – зона
проводимости ЗП получается из 3p подуровней. В случае с Mg ЗП накладывается
на ВЗ, и поэтому электрону не требуется большой энергии для перехода в эту
зону (?E = 0);
Al
ВЗ полностью заполнена и ?E = 0.
1.4 Электропроводность и теплопроводность металлов
? – электропроводность
? = enu [Ом-1 см-1] 106 – 104
Электроны в металле благодаря ничтожной массе и размерам обладают
значительной подвижностью. Обозначим эту подвижность через u [см2/(В с)].
Поэтому если к металлу приложить некоторую разность потенциалов, электроны
начнут перемещаться от отрицательного полюса к положительному, тем самым
создавая электрический ток. Удельная проводимость ? зависит от заряда
электрона и концентрации носителей, которая у большинства металлов
практически одинакова.
? = 1/ ? = RS/l; [Ом м]
? = h/(ke2n2/3)
где:
lср – длина свободного пробега электрона
k – постоянная Больцмана
n – концентрация
h – постоянная Планка
lср зависит от структуры металла. При одной и той же структуре она зависит
от радиуса атомов
Чистые металлы, имеющие совершенную кристаллическую решетку, обладают
наименьшим значением ?. Дефекты кристаллической решетки увеличивают
сопротивление вызывая рассеяние электронов.
? = ?чист+?примесей
При повышении температуры сопротивление увеличивается и причиной этого
является интенсификация колебаний кристаллической решетки. Теплопроводность
изменяется параллельно электропроводности.
1.5 Влияние различных факторов на удельную электропроводность.
(1) Зависимость удельного сопротивления проводников от температуры.
?Т = ?о(1+??Т)
?Т - ?о = ?о ??Т
?? = ??/(?Т) = d?/(?dT)
Для большинства металлов ?? = 1/273 = 0.004 К-1. Исключение составляют
металлы, относящиеся к магнетикам: Fe, Ni, Co и для них ?? отличается в 1.5
– 2 раза.
В настоящее время известно 23 металла, которые в интервале от 0.3 до
9.22 К обладают сверхпроводимостью
Таблица 1. Положение металлов, обладающих сверхпроводимостью.
|Подуровни
|
| | |плавления |кипения |
| |
|лёгкие цветные металлы
|
|Al |2699 |660 |2060 |211.0
|0.0265 |
|Mg |1740 |650 |1107 |157.4
|0.047 |
|Ti |4540 |1800 |3400 |14.9
|0.47 |
|тяжелые цветные металлы
|
|Ni |8900 |1455 |2730 |58.6
|0.068 |
|Zn |7140 |419 |907 |111.1
|0.059 |
|Sn |7300 |232 |2270 |63.1
|0.115 |
|Cu |8960 |1083 |260 |385.2
|0.0167 |
|Pb |11340 |327 |1740 |34.6
|0.2065 |
|малые цветные металлы
|
|Mo |10200 |2625 |4800 |140
|0.0517 |
|W |19350 |3377 |6000 |160
|5.03 |
|благородные цветные металлы
|
|Au |19320 |1063 |2600 |311
|0.0225 |
|Ag |10490 |960 |2210 |421
|0.0159 |
|Pt |21450 |1773 |4410 |69.9
|0.109 |
|редкие металлы
|
|Ge |5360 |958 |1760 |—
|0.89 (при 0) |
|Nb |8570 |2420 |3700 |—
|0.131 |
|Ta |11600 |2850 |5050 |54.4
|0.124 |
(2) Металлы высокой проводимости Cu, Ag, Al.
Медь (Cu), достоинства
1) малое удельное сопротивление (уступает только серебру)
2) достаточно высокая механическая прочность
3) удовлетворительная стойкость к коррозии
4) хорошая обрабатываемость (прокатывается в листы, в ленту,
протягивается в проволоку)
5) относительная легкость пайки и сварки
Содержание примесей влияет на различные свойства меди. Медь марки М1
содержит 99.90% меди, примеси 0.10%, медь марки М0 содержит 99.95% меди,
примеси 0.05%. Если в примесях Zn, Cd, Ag, то они снижают
электропроводность на 5%, а Ni, Sn или Al – на 25 – 40%. Еще более сильное
влияние оказывают примеси Be, As, Fe, Si и P, которые снижают
электропроводность на 55% и более. Поэтому медь очищают различными
способами: до 99.97% электролитическим способом.
В вакуумных печах получают медь, содержащую 99.99% меди. Эта медь
имеет электропроводность примерно равную электропроводности Ag. Из
специальной меди изготавливают детали магнетронов, аноды мощных
генераторных ламп, выводы энергии приборов СВЧ, некоторые типы волноводов и
генераторов; ее используют для изготовления фольгированного гетинакса, в
микроэлектронике в виде осажденных на подложке пленок, играющих роль
проводящих соединений между функциональными элементами схемы.
Алюминий почти в 3.5 раза легче меди. Марка А97 (0.03% примесей)
используется для изготовления алюминиевой фольги и электродов. А999 (0.001%
примесей). Оксидная пленка предохраняет алюминий от коррозии, но создает
большое сопротивление в местах спайки, что затрудняет пайку обычными
методами. Из оксидированного алюминия изготавливают различные катушки без
дополнительной изоляции, но при большой толщине Al2O3 уменьшается гибкость,
и увеличивается гигроскопичность.
(3) Тугоплавкие металлы
Температура плавления более 1700°С. Основными тугоплавкими металлами
являются металлы, стоящие в середине периода, у которых наряду с
металлическими связями есть еще и ковалентные
W
Cr
Mo
Один электрон участвует в металлической связи, т.е. делокализован,
обобществлен всем кристаллом, а остальные d электроны принимают участие в
ковалентной связи. Ковалентная связь прочна. Кристаллическая решетка имеет
высокую энергию связи, и требуются высокие температуры, чтобы эту связь
разрушить. Для этих металлов характерна высокая твердость, но в то же время
они обладают низкой пластичностью. К металлам с высокой температурой
плавления относятся W, Mo, Ta, Nb, Cr, V, Ti, Re, Zr; температура плавления
[1700;3500]°C. W самый тугоплавкий. Имеет высокую механическую прочность.
Используется в качестве нитей в лампах, электронных лампах, в рентгеновских
трубках, используется при глубоком вакууме. Недостатки: трудная
обрабатываемость и образование оксидных пленок.
(4) Благородные металлы
Не взаимодействуют (почти) с окружающей средой в связи со своей
химической стойкостью
Au 99.998%
Ag 99.9999%
Pt 99.9998%
Pd 99.94%
Au – является контактным материалом для коррозионно стойких покрытий
Ag с высокой проводимостью используется в качестве высоких контактов в
качестве электродов, производстве конденсаторов
Pt – для изготовления термопар, чувствительных приборов
Pd – заменитель платины (дешевле в 4-5 раз)
(5) Металлы со средним значением температуры плавления.
Fe, Ni, Co
(6) Металлы с невысокими температурами плавления.
Стоят они в нижней части периодической системы: имеют большой радиус,
и, как правило, у них нет свободных (не спаренных) d-электронов, и для них
характерна металлическая связь. Pb, Sn, Ga, In, Hg. Hg применяется в
качестве жидких катодов.
1.8 Сплавы
Одним из важнейших свойств металлов является образование сплавов.
Расплавленные металлы растворяются друг в друге, образуя при отвердевании
твердые смеси – сплавы. Металлическим сплавом называется фаза или комплекс
фаз, образующихся при сплавлении металлов при условии сохранения
металлических свойств: электро- и теплопроводность. В металлических сплавах
сохраняются связи, т.е. и наличие свободных электронов. Если образуются
ковалентные связи, то образуются интерметаллические неорганические
соединения.
Все металлы по величине диаметра атомов делятся на:
1) при диаметре 2.2-3Е металлы образуют между собой непрерывные твердые
растворы. (Mn, Fe, Ni)
2) при диаметре >3Е – не смешиваются с металлами середины длинных
периодов. (K, Ca, Si)
3) при диаметре <2Е (не металлы) – образуют ограниченные твердые растворы
или фазы внедрения. (Ti, V, Cr)
3-х компонентные системы представляют собой треугольник Гиббса, вершины
которого – чистые вещества А, В, С. Соответствующие свойства – в области,
перпендикулярной к треугольнику.
Существуют 3-7 компонентные сплавы
Сплавы высокой проводимости.
1) Бронзы – сплавы на основе Cu. Помимо чистой Cu применяют сплавы,
содержащие небольшое количество олова (Sn), кремния (Si), фосфора (P),
бериллия (Be), хрома (Cr), магния (Mg), кадмия (Cd). При этом ?
увеличивается, зато сплавы обладают более высокими механическими
свойствами. Предел при растяжении = 8350 Па. Особенно удачен Cd. При малом
уменьшении ?, приводит к значительному увеличению прочности. Еще больше
прочности у бериллиевой бронзы.
Латуни – повышенное значение относительного удлинения при увеличении
предела прочности. Это обеспечивает технологические преимущества
(изготовление токопровдящих деталей).
2) Сплавы алюминия.
Альдрей – содержит 0.3-0.5% Mg, 0.4-0.7% Si, 0.2-0.3% Fe; сохраняет
лёгкость алюминия, близок ему по сопротивлению, приближен по механической
прочности к твердотянутой меди.
Сплавы для электровакуумных приборов.
На основе металлов со средней температурой плавления (Fe,Ni) созданы
сплавы, которые широко применяются в электровакуумных технологиях, т.к. они
обладают ?L – коэффициент линейного температурного расширения, позволяют
получать сокращенные металлические конструкции и спаи со стеклом.
Инвар (Н36) – сплав Fe и 36% Ni
?L = 1*10-6 К-1 при Т = (-100)-100°С.
Ковар – Fe + 29% Ni + 17% Сo
?L = 4.8*10-6 К-1
? = 0.5 ? инвара.
Инвар и ковар применяют для герметизации изделий путём сварки со стеклом,
для изготовления конденсаторов с переменной ёмкостью.
Платинид (Н47) – Fe и 47% Ni
?L? ?L Pt и стекол.
Используется как вводы в стеклянные баллоны
Припои – сплавы для пайки.
Температура плавления припоя < температуры плавления соединения.
На границе металл – припой: припой смачивает металл, растекается и
заполняет зазоры, при этом компоненты припоя диффундируют в основной
металл, следовательно образуется промежуточная прослойка. Припои делят на
мягкие и твердые: мягкие - температура плавления < 300°С, твердые -
температура плавления > 300°С. Механическая прочность мягких припоев 16-100
МПа, у твердых 100-500 МПа. Мягкие припои – оловянно-свинцовые, твердые –
Cu, Zn, Ag с добавлением вспомогательных материалов.
Вспомогательные материалы (флюсы):
1) растворять и удалять оксиды из спаиваемых металлов.
2) защищать в процессе пайки поверхность от окисления.
3) уменьшать поверхностные натяжения
4) уменьшать растекаемость и смачиваемость припоя
По оказываемому действию:
1) активные (кислотные: HCl, ZnCl2, хлористые и фтористые металлы) –
интенсивно растворяют оксидную пленку, но после пайки вызывают
коррозию, следовательно, нужна тщательная промывка. При монтажной
пайке применение активных флюсов запрещено.
2) Бескислотные флюсы – канифоль и флюсы на ее основе с добавлением
спирта и глицерина.
3) Активированные – канифоль + активаторы (солянокислый диметиламин) –
пайка без предварительного удаления оксидов после обезжиривания.
4) Антикоррозийные флюсы на основе H2PO3 с добавлением контактол
Контактолы:
1) Ag, Ni, Pd, в порошкообразном виде используют в качестве проводящей
фазы в пасте.
2) Высокомолекулярные вещества. Применяются для получения контактов между
металлами, металлами и полупроводниками, создания электродов,
экранирования от помех…
Керметы
Металлоэлектрические композиции с неорганическими связующими для
резисторов, волноводных нагрузок с повышенным значением ?.
Сплавы высокого сопротивления
Для электроизмерительных приборов, образцовых резисторов, реостатов,
электронагревательных приборов.
Среди большого количества сплавов наиболее распространены сплавы на медной
основе: манганин и константан. Хромоникелевые и железо-хромо-алюминивые
сплавы.
Манганин: Mg – 12%, Ni – 2%, Cu – 86%
Константан: Cu – 60%
max ? и min ?? ? 0 или < 0. При нагреве образуется пленка оксида – оксидная
изоляция. Константан в паре с Fe или Cu дает термо-ЭДС.
Хромоникелевые сплавы – изготовление нагревательных элементов, резисторов.
Fe-Cr-Ni (фехроль, хромель) – дешевые сплавы для мощных нагревательных
устройств. Недостаток – хрупкость и твердость.
Резистивные сплавы: РС 37-10 – Cr 37%, Fe 10%, Ni 53%. РС 37-01 - Cr 37%,
Fe 1%, Ni 69%.
Сплавы для термопар:
1) капель – 56% Cu, 44% Ni
2) олимель – 95% Ni, 5% Al, Si, Mg
3) хромель – 90% Ni, 10% Cr
4) платинородий – 90% Pt, 10% Rd
Наибольшую термо-ЭДС имеют 1) и 2).
Глава 2
Не металлические материалы (полупроводники, диэлектрики и т.д.)
2.1 Атомная (ковалентная) кристаллическая решетка
В узлах решетки находятся нейтральные атомы, связанные друг с другом
ковалентной связью (общей электронной парой), т.е. перекрывание электронных
облаков. Ковалентная связь обладает насыщаемостью и направленностью и
поэтому координационное число определяется именно этими факторами. Наиболее
типична ковалентная связь для алмаза, кремния и карбида кремния
Si … 3s23p2
Si* … 3s13p2 – возбужденное состояние => Sp3 гибридизация => выравнивание
электронных орбиталей.
Плотноупакованные тетраэдры ( кубическая сингония) к = 4 – координационное
число
Ковалентная связь является прочной
|