Химия радиоматериалов, лекции Кораблевой А.А. (ГУАП) - Химия - Скачать бесплатно
атома очень мала. В
кристаллической решетке Ge находятся между узлами атомы Li (искажают
решетку) – создание n-проводимости. Если попадает Cl, обладающий
большой электроотрицательностью, то он захватывает электроны от
соседних атомов, образуя дырку.
3) Примеси вычитания – отсутствие стехиометрии. Если катионообразователя
(ZnSe избыток Zn) – возникает n-проводимость; если избыток
анионообразователя (Se) – проводимость р-типа.
Т.е. п/п очень чувствительны к наличию примесей. Требуется тщательная
очистка физико-химическими методами: зонная плавка, метод вытягивания по
Чохральскому, транспортные реакции.
2.9 Стеклообразные п/п.
Селениды, теллуриды, сульфиды элементов V группы образуют аморфные
(стеклообразные п/п)
Sb23+Te32-; As23+S32-; As23+Se32-; As25+Se52-;
Для аморфного состояния характерен только ближний порядок, поэтому зонная
теория к ним не применима (она выведена только для кристаллического
состояния), и свойства таких п/п можно объяснить с точки зрения валентной
связи. Их проводимость мало зависит от примесей. Она зависит от размеров
атомов, образующих соединения. С уменьшением радиуса атома п/п свойства
переходят в диэлектрические.
2.10 Органические п/п
В основном органические соединения – диэлектрики (см. ниже). Однако есть
большая группа органических п/п. Её особенностью является наличие
сопряженных связей:
? ? ? ? ? ?
= С – С = С – С = С – С = С
? ? ?
т.е. есть электроны коллективного пользования, значит вся молекула обладает
свойствами металла и представляет собой одномерный кристалл, а к нему
применима зонная теория. Дискретные уровни p-электронов представляют собой
валентную зону. Энергия активации электронов есть запрещенная зона.
Проводимость внутри молекулы очень велика поскольку p-электроны обладают
высокой подвижностью и небольшой энергией возбуждения.
Жидкий бензол является диэлектриком, т.к. электронам трудно преодолеть
энергетический барьер, связанный с межмолекулярными взаимодействиями.
Если соединить молекулы бензола так как показано на рисунке, то
энергетический барьер уменьшится.
2.11 Диэлектрики
это вещества, которые обладают следующими:
1) Большое удельное сопротивление
? = 1010 - 1020 [Ом/см]
2) E – электрическая прочность или пробивное напряжение [В/см]
3) Диэлектрическая проницаемость ?. В одних случаях она мала: 1, 2, 3… в
других случаях (для конденсаторов) 40, 80 и более.
4) Тангенс угла диэлектрической потери (tg?)
Диэлектрическими свойствами обладают вещества, которые имеют либо
ковалентную решетку, при очень маленьких радиусах атома (C (алмаз)), либо
ионную решетку с большой долей ионности и с малыми дефектами
кристаллической решетки.
Молекулярные кристаллические решетки
Поскольку молекулярные кристаллические решетки в обычных условиях для
неорганических соединений не существует, то речь идет только об
органических веществах.
2.12 Органические диэлектрики
Практически все органические вещества являются диэлектриками. За
исключением рассмотренных соединений с сопряженными связями, но
диэлектрические свойства органических соединений выражены неодинаково, и
зависит это от состава и строения этих соединений.
Различают высоко- и низкочастотные диэлектрики.
? = g*l – дипольный момент
l
если ? = 0 (l = 0), то молекула неполярна, поэтому всё равно как ей
располагаться в электрическом поле, и при измени полярности она ведет себя
индифферентно. Такой диэлектрик называется высокочастотным. Если ? > 0,
появляется диполь,и когда полярность быстро меняется, молекула не успевает
ориентироваться, а если между молекулами прочная связь и ориентирование
происходит в “вязкой” среде, происходит разогрев и пробой диэлектрика
[pic]
высокочастотный низкочастотный
Если в молекуле отсутствуют сильно электроотрицательные атомы, такие как
O, F, Cl, то связи будут малополярны и молекула в целом тоже будет
малополярна, значит диэлектрик может считаться высокочастотным. В молекуле
могут быть очень электроотрицательные элементы, но они должны быть
симметрично расположены, и, несмотря на большую полярность связи, в
результате их симметричного расположения в целом молекулы будут неполярны и
тоже могут использоваться в токах высокой частоты. Если же имеющиеся
полярные связи не симметричны, то в молекуле наличествует дипольный момент.
Такие соединения не могут быть использованы в качестве диэлектриков высокой
частоты.
Дипольный момент не всегда отрицательное качество. Его наличие упрочняет
химические связи между макромолекулами => увеличивают температуру плавления
и механическую прочность. Наличие полярных групп придает хорошие
адгезионные свойства, а такие вещества могут быть использованы в составе
клеящих копозиций.
Полимеры могут иметь
1)линейное
2)разветвленное
3)сетчатое
4)пространственное строение
1и2 обладют термопластичными (термообратимыми) свойствами, т.е. могут быть
расплавлены, а затем, без изменения свойств. Закристаллизованы. 3и4
являются термореактивными, т.е. термонеобратимыми. При нагреве они теряют
свои исходные свойства. (В кристаллическом и смолообразном состоянии) 100%
кристалличности быть не может. Максимальная кристалличность = 80%. Чем
больше степень кристалличности, тем выше температура плавления и ниже
морозостойкость. Аморфные полимеры более морозостойки.
Полимеры образуются из мономеров (низкомолекулярные вещества) в результате
двух видов реакций: полимеризации и поликонденсации.
(-А-)n – элементарный состав моно- и полимеров одинаков. В результате
полимеризации нет побочных продуктов.
(-A-B-)n – сополимеризация
(-A-A-A-A-A-)n – привитая полимеризация
| | |
B B B
| | |
B B B
(-A-A-A-A-B-B-B-B-)n – блок полимеризация
Возникает за счет разрыва двойных или тройных связей и присоединения
мономеров друг к другу.
na-A-a+nb-B-b>
Синтезируются за счет взаимодействия функциональных групп с выделением
побочных низкомолекулярных соединений, что может абсорбироваться в объеме
полимера и снижать его в частности диэлектрические свойства.
CH2=CH2 – этен
(-CH2-CH2-)n – полиэтилен.
1) полиэтилен высокого давления при Т = 200°С, Р = 1.5-3 *103 Атм.
2) низкого давления в присутствии катализаторов. Т = 100°С, Р = 30 Атм,
катализаторы: соединения Al, Ti, Cl.
Степень кристалличности полиэтилена низкого давления 65-85% температура
плавления = 125-135°С. У полиэтилена высокого давления Степень
кристалличности < 60%, температура плавления = 115°С. Полиэтилен весьма
устойчив к действию агрессивных сред. Но он стареет под действием
ультрафиолетового излучения. При комнатной температуре под действием
ультрафиолетового излучения он может храниться до трех лет, при температуре
= 160°С уже через час. Катализирует разрушение влага. Ценные качества –
диэлектричность. Широко применяется для изготовления выскочастотных
кабелей. Этот материал может использоваться как в чистом виде, так и в
совокупности с другими полимерами, в виде пленок, лаков, компаундов,
обладающих высокой водо- и химической стойкостью. Подобными свойствами
обладает полибутилен, полистирол. Он линеен и неполярен Полистирол
термопластичен, не гигроскопичен и обладает устойчивостью к воде, кислотам
и щелочам, но растворяется в ацетоне, эфире и некоторых других
растворителях. Он является очень хорошим диэлектриком и широко применяется
в высококачественной изоляции, в телевидении и средствах связи. Из него
готовят конденсаторы, антенны, высокочастотные кабели. Используется как
важный материал в приборостроении осбенно когда нужно высокое сопротивление
деформации, на его основе изготавливают компаунды, лаки, пленки,
поропласты… Недостаток – низкая теплостойкость и хрупкость, температура
размягчения 80-85°С
Фторопласт 4.
(-CF2-CF2-)n
– фторопласт 4 (поли-тетра-фтор-этилен)
Имеет симметричное строение => несмотря на полярность связи, в целом
молекула неполярна. Линейный, неполярный, термопластичный, обладает
исключительно высокой химической стойкостью, в том числе на него не
действуют растворители. Он разрушается под действием расплавленных щелочных
металлов и фтора. Очень термостойкий, сохраняет свойства при (-190 –
300°С), плавится при 327°С, разрушается при 400°С с выделением токсичных
отходов. Он является наилучшим диэлектриком, особенно в полях высоких и
сверхвысоких частот. Его свойства не зависят от частоты. Применяется в
агрессивных средах, при высокой влажности. Недостаток – холодная текучесть.
Фторопласт 3
Ассиметричное строение.
-----------------------
Cl F
| |
–C ––– C–
| |
F F
F F
| |
–C ––– C–
| |
F F
изоэлектронные ряды
3s
(n-1)dSns1
|