Лекции по предмету статистика - Статистика - Скачать бесплатно
Взаимосвязь может быть также охарактеризована с помощью балансов.
Пример: межрайонная связь.
|Р-н приб.|А |Б |В |Г |Итого |
| | | | | |отправлено|
|Р-н отпр.| | | | | |
|А |20 |100 |80 |60 |260 |
|Б |50 |30 |40 |70 |190 |
|В |40 |60 |25 |80 |205 |
|Г |100 |50 |90 |35 |275 |
|Итого |210 |240 |235 |245 |930 |
|прибыло | | | | | |
(3) Графический метод
Может использоваться как самостоятельно, так и совместно с другими
методами.
Если конкретные данные перенести на график, то полученное изображение
называется полем корреляции. На оси абсцисс откладывается значение
факторного признака, а на оси ординат – результативного. Каждая единица,
обладающая определенным значением факторного и результативного признака,
обозначается точкой.
Беспорядочное расположение говорит об отсутствии связи. Наоборот, чем
сильнее связь, тем теснее точки группируются вокруг определенной линии.
(4) Метод аналитической группировки
Сначала выбираются два признака: факторный и результативный. Пол
факторному признаку производится группировка, а по результативному –
подсчет средних или относительных величин.
Путем сопоставления характера изменений значений факторного и
результативного признака можно сделать вывод о наличии связи и ее
направлении. При помощи метода аналитической группировки можно сделать
вывод и о тесноте связи.
Пример: среднегодовая з/п работников-текстильщиков в 1849 г.
|Группы |З/п в рублях |
|предприятий по | |
|числу работников| |
|более 1000 |219 |
|501– 1000 |204 |
|101 – 500 |198 |
|51 – 100 |188 |
|24 – 50 |192 |
|менее 20 |164 |
Аналитические методы
Это основные методы изучения связи. Они делятся на непараметрические и
параметрические.
Непараметрические
Их еще называют ранговыми методами. Они связаны с расчетами различных
коэффициентов. Применяются как отдельно, так и совместно с
параметрическими. Особенно эффективны непараметрические методы, когда
необходимо измерить связь между качественными признаками. Они проще в
вычислении и не требуют никаких предположений о законе распределения
исходных статистических данных, т.к. при их расчете оперируют не самими
значениями признаков, а их рангами, частотами, знаками и т.д.
Коэффициент Фехнера (коэффициент совпадения знаков)
|x |y |
|x1 |y1 |
|x2 |y2 |
|x3 |y3 |
|. |. |
|. |. |
|. |. |
|xn |yn |
|х = хi|y = yi|
|- х |- y |
|– |+ |
|+ |+ |
|+ |– |
|– |– |
|+ |+ |
|+ |– |
|– |+ |
Расчет основан на применении первых степеней отклонений значений
признака от среднего уровня ряда двух связанных признаков.
|i =|кол-во совпадений – |
| |кол-во несовпадений |
| |общее количество |
| |отклонений |
|i =|3 – | =|1|
| |4 |– | |
| |7 | |7|
Коэффициент совпадения знаков может принимать значения от –1 до +1. Чем
ближе значение коэффициента к |1|, тем связь более тесная. Знак
коэффициента говорит о направлении, величина – о силе связи.
Коэффициенты ассоциации и контингенции
Используются для измерения связи между двумя качественными признаками,
состоящими только из двух групп.
| |. . |. . .|Итого |
| |. . |. . | |
| |. | | |
|. . . . .|a |b |a + b |
|. . . . .|d |c |c + d |
|Итого |a + |b + d|a + b+ |
| |c | |c+ d |
|Оценка |Неудовле|Положит.|Итого |
|Посещение |тв. | | |
|Посещали |86 |14 |100 |
|Не посещали |22 |28 |50 |
|Итого |108 |42 |150 |
[pic] – коэфф. ассоциации;
[pic] – коэфф. контингенции.
Коэффициент контингенции всегда меньше коэффициента ассоциации. Связь
считается подтвержденной, если [pic] или [pic].
Коэффициент Спирмана (ранговый коэффициент)
Рассчитывается по следующей формуле: [pic].
|№ п/п|Себестоимос|Средняя |Ранги |di = Rz|di2 |
| |ть |з/п | |- Rf | |
| |единицы | | | | |
| |прод. | | | | |
| | | |Rz |Rf | | |
|1. |68,8 |168,5 |3 |6 |-3 |9 |
[pic]
|2. |70,2 |158,7 |5 |1 |4 |16 |
|3. |71,4 |171,7 |7 |8 |-1 |1 |
|4. |78,5 |183,9 |10 |10 |0 |0 |
|5. |66,9 |160,4 |2 |2 |0 |0 |
|6. |69,7 |165,2 |4 |5 |-1 |1 |
|7. |72,3 |175,0 |8 |9 |-1 |1 |
|8. |77,5 |170,4 |9 |7 |2 |4 |
|9. |65,2 |162,7 |1 |3 |-2 |4 |
|10. |70,7 |163,0 |6 |4 |2 |4 |
|Итого| | | | | |40 |
Коэффициент Спирмана может принимать значения от –1 до +1, причем чем
ближе значение коэффициента к |1|, тем связь более тесная. Знак
коэффициента говорит о направлении связи.
Непараметрические
Главным параметрическим методом является корреляционный. Он заключается
в нахождении уравнения связи, в котором результативный признак зависит
только от интересующего нас фактора (или нескольких факторов). Все прочие
факторы, также влияющие на результат, принимаются за постоянные средние.
Удобной формой изучения связи является корреляционная таблица. В этой
таблице одни признаки располагаются по строкам, а другие – в колонках.
Числа, стоящие на пересечении строк и колонок, показывают, сколько раз
встречается данное значение факторного признака с данным значением
результативного.
Рассмотрим следующую схему:
|К-во |3-5 |5-7 |7-9 |9-11 |fy |
|станков | | | | | |
| | | | | | |
|Час. | | | | | |
|прод. | | | | | |
|10-15 |5 | | | |5 |
|15-20 |2 |4 |2 | |8 |
|20-25 | |6 |1 | |7 |
|25-30 | | |6 | |6 |
|30-35 | | |2 |2 |4 |
|fx |7 |10 |11 |2 |30 |
По такой таблице можно сделать выводы (1) о том, существует ли связь,
(2) о ее направлении и (3) о ее интенсивности (при условии существования
связи).
[pic]
[pic]
[pic]
[pic]
В указанных уравнениях величина результативного признака представляет
собой функцию только одного фактора х. Все прочие факторы приняты за
постоянную и выражены параметром а0.
Таким образом, при выравнивании фактические значения у заменяются
значениями, вычисленными по уравнению. Поскольку все факторы, определяющие
у, являются постоянными средними величинами, постольку и выровненные
значения (ух) являются средними величинами ([pic]).
Параметры а1 (а в уравнении параболы и а2) называются коэффициентами
регрессии. В корреляционном анализе эти параметры показывают меру, в
которой изменяется у при изменении х на одну единицу.
При линейной зависимости коэффициент регрессии а1 называется также
коэффициентом пропорциональности. Он положителен при прямой зависимости,
отрицателен – при обратной.
Параметр же а0 показывает влияние на результативный фактор множества
неучтенных факторов.
Уравнение регрессии имеет большую ценность, поскольку позволяют
экстраполировать показатели связи за пределы исследованных данных.
Корреляционное отношение для выровненных значений
результативного признака рассчитывается так же, как и
для значений, полученных на основе группировок.
В этом случае вся вариация результативного признака за счет всех
факторов обозначается
Вариация результативного признака за счет всех факторов, кроме х, равна
Вариация за счет интересующего нас фактора х равна разности
Дисперсия, характеризующая величину вариации за счет фактора х, может
быть рассчитана непосредственно как
Отсюда
Данное корреляционное отношение применяется во всех случаях изучения
связи для оценки ее тесноты независимо от формы связи (прямолинейной или
криволинейной).
Для прямолинейной связи может быть преобразовано в специальный
линейный коэффициент корреляции
Значение его колеблется от –1 до +1. Знак говорит о направлении, а
величина – о тесноте связи.
Выборочный метод
Основы выборочного метода
Выборочное наблюдение – одно из наиболее современных видов
статистического наблюдения. Выборочное наблюдение – это такое наблюдение,
при котором обследованию подвергается часть единиц изучаемой совокупности,
отобранных на основе научно разработанных принципов, обеспечивающих
получение достаточного количества достоверных данных, для того чтобы
охарактеризовать всю совокупность в целом.
Средние и относительные показатели, полученные на основе выборочных
данных, должны достаточно полно воспроизводить или репрезентатировать
соответствующие показатели совокупности в целом.
Логика выборочного наблюдения
1) определение объекта и целей выборочного наблюдения;
2) выбор схема отбора единиц для наблюдения;
3) расчет объема выборки;
4) проведение случайного отбора установленного числа единиц из
генеральной совокупности;
5) наблюдение отобранных единиц по установленной программе;
6) расчет выборочных характеристик в соответствии с программой
выборочного наблюдения;
7) определение ошибки, ее размера;
8) распространение выборочных данных на генеральную совокупность;
9) анализ полученных данных.
Основные преимущества
1) Выборочное наблюдение можно осуществить по более широкой программе.
2) Выборочное наблюдение более дешевое с точки зрения затрат на его
проведение.
3) Выборочное наблюдение можно организовать тогда и в тех случаях,
когда отчетностью мы воспользоваться не можем.
Основные недостатки
1) Полученные данные всегда содержат в себе ошибку, о результатах
наблюдения можно судить лишь с определенной степенью достоверности.
Но по сравнению с другими видами наблюдения это достоинство
выборочного метода.
2) Для его проведения требуются квалифицированные кадры.
Вся совокупность единиц, из которых производится отбор, называется
генеральной. Совокупность единиц отобранных называется выборочной.
Для генеральной совокупности –
Для выборочной совокупности –
Обычно частота обозначается как , а относительная численность
единиц выборочной совокупности, обладающая данным признаком, называется
частостью – . Если численность единиц выборочной совокупности
обозначить через , то получим:
Ошибки выборки
Чтобы оценить степень точности выборочного наблюдения, необходимо
оценить величину ошибок, которые могут возникнуть в процессе проведения
выборочного наблюдения.
Основное внимание уделяется случайным ошибкам репрезентативности.
Средняя ошибка выборки
Мерой колеблемости возможных значений выборочной средней является
средний квадрат отклонений вариантов выборочной средней от генеральной,
взвешенной по их вероятностям, т.е. дисперсия выборочной средней.
Отсюда видно, что средняя ошибка выборки прямо
пропорциональна среднему квадратическому отклонению
и обратно пропорциональна квадратному корню из
численности выборки.
Если выборка используется для определения доли признака, то средняя
ошибка выборки определяется по следующей формуле:
Когда значение и значение неизвестны, то значение
принимается равным .
Предельная ошибка выборки
Средняя ошибка выборки используется для определения возможных
отклонений показателей выборочной совокупности от соответствующих
показателей генеральной совокупности.
С определенной вероятностью можно утверждать, что эти отклонения не
превысят заданной величины , которая называется предельной ошибкой
выборки.
Предельная ошибка связана со следующим равенством:
– коэффициент, зависящий от вероятности, с которой можно
гарантировать определенные размеры предельной ошибки выборки. Применительно
к выборочному методу из теоремы Черышева следует, что с увеличением
значений величина вероятности быстро приближается к единице.
|t |p |
|1 |0,683 |
|2 |0,954 |
|3 |0,997 |
|4 |0,99993|
| |6 |
|: |: |
В связи с этим, увеличивая численность выборки, можно отклонение
выборочной средней от генеральной довести до сколь угодно малых размеров,
причем это результат можно гарантировать с вероятностью сколь угодно
близкой к единице.
Основные виды выборки, способы отбора
Какой бы способ отбора мы не применяли, на последнем этапе в любом
случае надо обеспечить случайную выборку, для того чтобы уменьшить размер
выборки. Вид выборки определятся способом отбора единиц, подвергающихся
наблюдению.
Выборочная совокупность может быть образована либо путем
последовательного отбора единиц, либо путем последовательного отбора групп.
Если перед отбором совокупность разбивается на отдельные группы, из
которых затем производится индивидуальный отбор, то такая выборка
называется типической, районированной, стратифицированной. Если отбирают
целые серии и в них проводится сплошное наблюдение, то такая выборка
называется серийной, или гнездовой.
Выборка в любом из указанных видов может быть осуществлена путем
повторного или бесповторного отбора. Повторный – это такой отбор, при
котором каждая единица или серия участвует в отборе столько раз, сколько
отбирают единиц или серий. При бесповторном отборе отобранная единица
больше не участвует в отборе.
Случайность отбора обеспечивается следующими механизмами:
1) путем жеребьевки;
2) путем механической выборки (все единицы совокупности располагаются в
определенном порядке, а затем в зависимости от численности выборки
отбираются определенные единицы);
3) с помощью таблицы случайных чисел.
В зависимости от процедуры отбора расчет предельной ошибки выборки
имеет определенную модификацию.
| |Предельная ошибка выборки |
| |Для средней |Для доли |
|Повторный отбор | | |
| | | |
|Бесповторный | | |
|отбор | | |
Примеры задач
Пример 1. Найти среднюю и с вероятностью 0,954 – предельную ошибку
среднего бала, если дисперсия успеваемости равна 0,56, а обследованию
подвергнуто 100 студентов.
Что произойдет с ошибкой среднего балла, если обследовать 400
студентов? – Ошибка уменьшится в два раза. Это значит, что ошибку 0,06
можно будет гарантировать с вероятностью 0,954.
Пример 2. Какую ошибку доли отобранных деталей можно ожидать с
вероятностью 0,9, если дисперсия равна 0,09, а обследованию подвергнуто 400
деталей?
Численность выборки
Из формулы предельной ошибки выборки формула для расчета численности
выборки:
Пример 3. Сколько изделий необходимо отобрать для исчисления процента
бракованных с ошибкой не более [pic]2 % при вероятности 0,954, если
вариация изучаемого признака максимальная.
Пример 4. Какое количество станков надо обследовать, чтобы ошибка
среднего срока службы не превышала 1 год с вероятностью 0,997, если
дисперсия срока службы станка равна 25 годам.
Повторный групповой отбор
В зависимости от того, отбираются ли единицы или же группы, различают
индивидуальный или групповой отбор. При повторном групповом отборе
(повторный индивидуальный мы уже рассмотрели) предельная ошибка выборки
равна:
|Для средней |Для доли |
| | |
| | |
| | |
| | |
| | |
|
|