быстро снижает активность
при перегревах, а в присутствии сернистых соединений образуется неактивный
сульфид меди.
Сырье, используемое для производства низкотемпературных катализаторов,
должно содержать минимальное количество примесей, поскольку наличие
последних снижает селективность контакта и ухудшает качество метанола-сырца
(особенно жесткие требования предъявляют к содержанию мышьяка, серы и
железа). Поэтому при использовании сырья, загрязненного различными
примесями, в том числе и сернистыми соединениями, медьсодержащие
катализаторы практически не могут быть применены.
Производство катализаторов состоит из двух основных стадий:
приготовление катализатора и восстановление его до активного состояния. В
промышленности цинк-хромовые катализаторы могут быть приготовлены «сухим» и
«мокрым» методами.
При «сухом» методе приготовления предварительно измельченные окись цинка и
хромовый ангидрид, взятые в определенном соотношении, тщательно
перемешивают на бегунах сначала в сухом виде, затем с увлажнением
дистиллированной водой. В полученную смесь вводят до 1% мелкодисперсного
графита и формуют таблетки размером 5х5 или 9Х9 мм. По так называемому
«мокрому» способу к суспензии окиси цинка добавляют раствор хромового
ангидрида. Процесс проводят в специальных аппаратах-смесителях с
последующим отделением воды. Полученную пасту последовательно сушат,
смешивают с графитом и таблетируют. Приготовленный «мокрым» способом
катализатор более однороден по химическому составу, более пористый, а также
имеет высокую механическую прочность. Активность катализатора,
приготовленного по «мокрому» способу, на 10—15% выше полученного «сухим»
способом.
Цинк-хромовый катализатор получают также соосаждением из азотнокислых солей
цинка и хрома. В растворе при взаимодействии этих солей с карбонатом
аммония в осадок выпадают основные углекислые соли. При прокаливании осадка
в атмосфере водорода получающиеся окислы цинка и хрома взаимодействуют с
образованием хромита цинка. Полученную контактную массу после измельчения
смешивают с графитом и таблетируют. Приготовленные катализаторы имеют
высокоразвитую внутреннюю поверхность (более 100 м2), меньшую на 30—36%
насыпную массу и более высокую активность, чем катализаторы, полученные по
«сухому» способу.
Катализатор марки СМС-4 получают по так называемому «полумокрому» методу.
Причем его можно приготовить на оборудовании, предназначенном для
производства по «сухому» способу, без существенного усложнения технологии
процесса приготовления.
Приготовление катализаторной массы в любом случае сопровождается
взаимодействием хромового ангидрида с окисью цинка:
2ZnO + СгОд + Н^О •;—>• 2п2(ОН)аСг04
По техническим условиям невосстановленные образцы катализаторов должны
содержать 55±1,5% ZnO, 34±1,0% СгОз, не более 1,3% графита, не более 2,0%
воды гигроскопической (остальное — вода кристаллизационная).
Невосстановленный катализатор представляет собой малопористое вещество с
небольшой удельной поверхностью 10—15 м^г.
Активная форма цинк-хромового катализатора образуется в процессе его
восстановления различными газами-восстановителями, например водородом.
Удельная поверхность восстановленного катализатора 100—120 м^г (по «сухому»
методу) и 196 м^г (по «мокрому» методу). Восстановление цинк-хромового
катализатора сопровождается большим выделением тепла. Обычно восстановление
проводят при медленном подъеме температуры до 190—210 °С. При неосторожном
ведении процесса возможны самопроизвольные, в отдельных случаях местные,
перегревы катализатора, которые приводят к потере его активности в
результате спекания.
При восстановлении катализатора окисью углерода интенсивность
восстановления замедляется выделяющейся двуокисью углерода. При местных
перегревах катализатора возможно образование метана и как результат резкое
повышение температуры. При восстановлении же водородом тормозящее действие
на процесс оказывают пары воды. Для снижения скорости восстановления газ-
восстановитель разбавляют инертным газом (обычно азотом).
В промышленных условиях цинк-хромовый катализатор можно восстанавливать
непосредственно в колонне синтеза продувочным газом* при 100—150 кгс/см2 и
190—210 °С. Содержание водорода в газе обычно поддерживают не выше 70
объемн.%. Процесс контролируют по количеству сливаемой воды, образующейся в
результате восстановления: не более 5—8 л/ч с 1 м3 катализатора.
При восстановлении цинк-хромового катализатора вне колонны синтеза в
кипящем слое перед таблетированием обеспечивается хороший контакт газа с
катализатором и интенсивный отвод тепла. • В последнее время внедрен в
промышленность способ восстановления цинк-хромового катализатора (СМС-4)
парами метанола при 170—230 °С и атмосферном или повышенном давлении.
Продолжительность восстановления 8—36 ч. При использовании в качестве
восстановителя паров метанола уменьшается опасность перегрева катализатора,
кроме того, процесс восстановления можно вести без циркуляционных
компрессоров.
Пробег промышленного цинк-хромового катализатора в значительной степени
определяется условиями восстановления катализатора и процесса синтеза
метанола на нем. В начальной стадии развития производств метанола, когда в
качестве сырья использовали водяной газ со значительным количеством
примесей и процесс проводили при отношениях На : СО не выше 4. пробег
катализатора не превышал 4—5 месяцев. При использовании природного газа и
отношении Н2: СО в цикле выше 6 цинк-хромовый катализатор практически не
снижает активность в течение года. Обычно
* Исходным газом называют очищенный конвертированный газ, поступающий при
высоком давлении в агрегат синтеза.
** Т. е. время эксплуатации катализатора, в течение которого выход метанола
соответствует средним величинам по проекту. отработанный цинк-хромовый
катализатор не регенерируют. Для стабилизации работы цинк-хромового
катализатора во времени в него вводит окислы металлов VI группы
периодической системы, например окислы молибдена, вольфрама и др.
-
Низкотемпературные катализаторы могут быть получены разнообразными
способами и из различного сырья. При приготовлении катализаторов
предпочтение отдается методу соосаждения. Выпускают такие катализаторы в
таблетках размером 5х5 мм.
Восстановление низкотемпературных катализаторов сложнее, чем цинк-хромовых
и требует большой осторожности. Катализаторы восстанавливают в узком
интервале температур (110—115°С), при этом выделяется большое количество
тепла. Восстановление можно проводить при атмосферном и повышенном
давлениях — важно обеспечить отвод тепла от катализатора. Необходимо
заметить, что низкотемпературный катализатор обладает пирофорными
свойствами, и при выгрузке из колонн синтеза возможен его сильный разогрев
и даже воспламенение. Поэтому до выгрузки катализатор пассивируют, т. е.
обрабатывают паром или азотом,' содержащим до 5 объемн.% Oz.
!
Доля установок, работающих на низкотемпературных катализаторах, в
производстве метанола пока незначительна. Однако перевод производств на
природный газ, разработка методов очистки газа от сернистых соединений и
простота конструкции аппаратуры синтеза при низком давлении расширяет
перспективу использования этих катализаторов в промышленности,
Влияние различных параметров на процесс синтеза метанола.
В процессе синтеза метанола с течением времени активность катализатора
снижается. Чтобы обеспечить нормальные условия
синтеза метанола и достичь оптимальных технико-экономических показателей
производства, корректируются технологические параметры
процесса—температура, давление, отношение На: СО, объемная скорость и
содержание инертных компонентов в газе. Производительность катализатора
является показателем, который может быть применен для оценки активности
катализатора и эффективности его работы. Производительность катализатора—
это количество продукта (метанола), получаемого с единицы объема
катализатора за единицу времени, например т СНзОН/м3 с катализатора в
сутки. Кроме температуры, давления, объемной скорости и состава исходного
газа на производительность влияет также и размер зерна катализатора.
Условия проведения процесса. Исходя из термодинамики и кинетики процесса
выбирают условия его проведения на соответствующих катализаторах.
Так, в промышленных условиях на цинк-хромовых катализаторах процесс ведут
под давлением 25—70 мПа, при температуре 370—420 °С, объемной скорости
подачи газовой смеси-lOOOO—35000-i и мольном соотношении Н2:СО=(1,5—2,5):1.
Обычно исходный газ содержит 10—15% инертных примесей. В связи с этим
требуется непрерывный вывод части рецикла газовой смеси (»10%) из системы.
В этих условиях конверсия СО за один проход составляет 5—20% при выходе
метанола 85—87% от стехиометрического. Непревращенный газ возвращается в
реактор после конденсации метанола и воды. Одновременно с метанолом
образуется ряд побочных продуктов: диметиловый эфир, высшие спирты и др.
При работе на низкотемпературных медьсодержащих катализаторах давление
поддерживается в пределах 3—5 мПа, температура—230—280 °С, объемная
скорость 8000—12000 ч-', мольное соотношение Н2:СО==(5—7) : 1. Обязательным
условием успешной работы низкотемпературных катализаторов является
присутствие в газовой смеси 4—5% (об.) диоксида углерода. Он необходим для
поддержания активности таких катализаторов. Срок службы катализатора при
выполнении этого условия достигает 3—4 лет.
5. Описание химико-технологической схемы.
Основным аппаратом в синтезе метанола служит реактор — контактный аппарат,
конструкция которого зависит, главным образом, от способа отвода тепла и
принципа осуществления процесса синтеза. В современных технологических
схемах используются реакторы трех типов:
— трубчатые реакторы, в которых катализатор размещен в трубах, через
которые проходит реакционная масса, охлаждаемая водным конденсатом, кипящим
в межтрубном пространстве;
— адиабатические реакторы, с несколькими слоями катализатора, в которых
съем тепла и регулирование температуры обеспечивается подачей холодного
газа между слоями катализатора;
—реакторы, для синтеза в трехфазной системе, в которых тепло отводится за
счет циркуляции жидкости через котел-утилизатор или с помощью встроенных в
реактор теплообменников.
Вследствие большого объема производства и весьма крупных капитальных затрат
в производстве метанола сейчас используют все три типа технологических
процессов. На рис. 1 представлена технологическая схема производства
метанола при низком давлении на цинк-медь-алюминиевом катализаторе из
синтез-газа состава: Hg — 67%, СО — 22%, С02 — 9% -объемных, полученного
конверсией метана, производительностью 400 тыс. т в год.
Очищенный от сернистых соединений синтез-газ сжимается
в компрессоре 1 до давления 5—9 МПа, охлаждается в холодильнике 3 и
поступает в сепаратор 4 для отделения сконденсировавшейся воды. Пройдя
сепаратор, синтез-газ смешивается с циркуляционным газом, который
поджимается до рабочего давления в компрессоре 2. Газовая смесь проходит
через адсорбер.
[pic]
Высшие
спирты
Рис. 1. Технологическая схема производства метанола
при низком давлении:
1 — турбокомпрессор, 2 — циркуляционный компрессор, 3, 7 —холодильники, 4 —
сепаратор, 5 — адсорбер, 6 — реактор адиабатического действия, б —
теплообменник, 9 — котел-утилизатор, 10 — сепаратор, 1 1 — дроссель, 12 —
сборник метанола-сырца, 13, 14 — ректификационные колонны
Циркуляционый газ 5, где очищается от пентакарбонила железа,
образовавшегося при взаимодействии оксида углерода (II) с материалом
аппаратуры, и разделяется на два потока. Один поток подогревают в
теплообменнике 8 и подают в верхнюю часть реактора 6, а другой поток вводят
в реактор между слоями катализатора для отвода тепла и регулирования
температуры процесса. Пройдя реактор, реакционная смесь при температуре
около 300°С также делится на два потока. Один поток поступает в
теплообменник 8, где подогревает исходный синтез-газ, другой поток проходит
через котел-утилизатор 9, вырабатывающий пар высокого давления.
Затем,потоки объединяются, охлаждаются в холодильнике 7 и поступают в
сепаратор высокого давления 10, в котором от циркуляционного газа
отделяется спиртовой конденсат. Циркуляционный газ дожимается в компрессоре
2 и возвращается на синтез. Конденсат метанола-сырца дросселируется в
дросселе 11 до давления близкого к атмосферному и через сборник 12
поступает на ректификацию. В ректификационной колонне 13 от метанола
отгоняются газы и. диметиловый эфир, которые также сжигаются. Полученный
товарный метанол с выходом 95% имеет чистоту 99,95%.
На рис. 2. приведена технологическая схема производства метанола по
трехфазному методу на медь-цинковом катализаторе из синтез-газа,
полученного газификацией каменного угля, производительностью 650 тыс. т в
год.
Очищенный от соединений серы синтез-газ сжимается в компрессоре 1 до
давления 3—10 МПа, подогревается в теплообменнике 5 продуктами синтеза до
200— 280°С, смешивается с циркуляционным газом и поступает в нижнюю часть
реактора 4.' Образовавшаяся в реакторе парогазовая смесь, содержащая до 15%
метанола, выходит из верхней части реактора, охлаждается последовательно в
теплообменниках 5 и б и через холодильник-конденсатор 7 поступает в
сепаратор 8, в котором от жидкости отделяется циркуляционный газ. Жидкая
фаза разделяется в сепараторе на два слоя: углеводородный и метанольный.
Жидкие углеводороды перекачиваются насосом 9 в реак-
Циркуляционный газ
[pic]
Рис. 2. Технологическая схема производства метанола в трехфазной системе:
1 — компрессор, 2 — циркуляционный компрессор, 3,9 — насосы, 4 • реактор
кипящего слоя, 5,6 — теплообменники, 7 — холодильник-конденсатор, 8 —
сепаратор, 10 — котел-утилизатор.
тор, соединяясь с потоком углеводородов, проходящих через котел-утилизатор
10. Таким образом жидкая углеводородная фаза циркулирует через реактор
снизу вверх, поддерживая режим кипящего слоя тонкодисперсного катализатора
в нем, и одновременно обеспечивая отвод реакционного тепла. Метанол-сырец
из сепаратора 8 поступает на ректификацию или используется непосредственно
как топливо или добавка к топливу.
Разработанный в 70-х годах трехфазный синтез метанола используется в
основном, для производства энергетического продукта. В качестве жидкой фазы
в нем применяются стабильные в условиях синтеза и не смешивающиеся с
метанолом углеводородные фракции нефти, минеральные масла,
полиалкилбензолы. К указанным выше преимуществам трехфазного синтеза
метанола следует добавить простоту конструкции реактора, возможность замены
катализатора в ходе процесса, более эффективное использование теплового
эффекта реакции. Вследствие этого установки трехфазного синтеза более
экономичны по сравнению с традиционными двухфазными как высокого так и
низкого давления. В табл. 12.2 приведены показатели работы установок трех-
и двухфазного процесса одинаковой производительности 1800 т/сут.
Таблица 12.2. Показатели работы установок синтеза метанола
|Показатель |Тип установки |
| |Трехфазн|Двухфазна|
| |ая |я |
|Давление, МПа |7,65 |10,3 |
|Объемная скорость газа, ч~1 |4000 |6000 |
|Отношение циркуляционного | | |
|газа • | | |
|к исходному синтез-газу |1:1 |5:1 |
|Концентрация метанола на |14,5 |5,0 |
|выходе, % мол. | | |
|Мощность, потребляемая |957 |4855 |
|аппаратурой, кВт | | |
|Термический коэффициент | | |
|полезного | | |
|действия,% |97,9 |86,3 |
|Относительные капитальные |0,77 |1,00 |
| | | |
| | | |
| | | |
| | | |
|затратызатраты | | |
7. Расчет материального баланса ХТС.
Тадл. №1. Составы потоков.
|Показатель |Размерность |Значение |Обозначение |
|Содерж. СО в циркул. |Мольн. доли |0,12 | |
|газе | | | |
|Содерж. Н2 в циркул. |Мольн. доли |0,74 | |
|газе | | | |
|Содерж. СН4 в цирк. |Мольн. доли |0,14 | |
|газе | | | |
|Содерж СН4 в свежем |Мольн. доли |0,04 | |
|газе | | | |
|Общая конверсия СО: |Мольн. доли |0,2 | |
|- доля СО, преврат. | |0,95 | |
|в СН3ОН | | | |
|- доля СО, преврат. | |0,03 | |
|в (СН3)2О | | | |
|- доля СО, преврат. | |0,02 | |
|в С4Н9ОН | | | |
|Базис расчета |т. СН3ОН |1500 | |
1.Структурная блок – схема.
Производство метанола основано на реакции:
СО + 2Н2 ( СН3ОН +Q,
Одновременно протекают побочные реакции:
СО +3Н2 ( СН4 +Н2О
2СО + 4Н2 ( (СН3)2О +Н2О
4СО + 8Н2 ( С4 Н9ОН + 3Н2О
Составляем уравнения материального баланса:
Табл. №2. Соответствие переменных потокам.
|Поток |Переменная |Размерность |Значение по |
| | | |расчету |
| |X1 |моль |234,375 |
| |X2 |Моль |53,267 |
| |X3 |Моль |1509,233 |
| |X4 |Моль |1250 |
| |X5 |Моль |133,168 |
| |X6 |моль |53,267 |
Производим замену переменных и записываем линейные уравнения следующим
образом:
1. X1 – X2 – 0.12X3 = 0
2. X4 – X5 – 0.74X3 = 0
3. X4 – 0.4X1 – 0.74X3 – 0.74X6 = 0
4. 0.8X1 – 0.12X3 – 0.12X6 = 0
5. 0.04X2 + 0.04X5 – 0.14X6 = 0
6. 6.4X1 = 1500
Матрица коэффициентов.
|X1 |X2 |X3 |X4 |X5 |X6 |Свободныечл|
| | | | | | |ены |
|1 |-1 |-0,12|0 |0 |0 |0 |
|0 |0 |-0,74|1 |-1 |0 |0 |
|-0,4|0 |-0,74|1 |0 |-0,74|0 |
|0,8 |0 |-0,12|0 |0 |-0,12|0 |
|0 |0,04|0 |0 |0,04 |-0,14|0 |
|6,4 |0 |0 |0 |0 |0 |1500 |
[pic]
Табл. №3.
Материальный баланс химико-технологической системы производства метанола на
1500т метанола.
|Приход |масса |%масс. |Расход |масса |%масс. |
|СО |1491,476|0,792 |СН3ОН(сырец) |1500 | |
|Н2 |266,336 |0,142 |(СН3)2О |32,347 |0,017 |
|СН4(инерт) |124,3 |0,066 |С4Н9ОН |17,344 |0,009 |
| | | |Н2О |25,31 |0,014 |
| | | |СН3ОН(чист.) |1425 |0,759 |
| | | |Отдув. газы |377,153 |0,201 |
|Всего |1882,102| |Всего |1877,153| |
| | | |Невязка |4,949 | |
Расчет:
M=M*N
Приход:
Расход:
Отдувочные газы:
Расчёт технологических показателей (по СО):
1) Степень превращения
X = (1580,6 - 198,95)/ 1580,6 * 100% = 87,4 %
2) Селективность
(
|