+ H2O SN2
(
H для
первичных спиртов
R R (H2O R
Br( R
R’(C(OH + H+ > R’(C(O+(H R’(C+ > R’(C(Br SN1
R” R” ( R”
R”
H
для вторичных и третичных спитртов
Для успешной замены гидроксильной группы на хлор используют реактив Лукаса
(соляная кислота + ZnCl2 ). Реакционная способность спиртов в этих реакциях
изменяется в ряду: третичные>вторичные>первичные.
3. Реакции с участием группы OH и атома водорода, стоящего у соседнего
атома углерода.
Дегидратация спиртов в олефины. Все спирты (кроме метилового) при
пропускании их паров над нагретой до ~375°С окисью алюминия отщепляют воду
и образуют олефин:
Al2O3
СН3-СН2ОН СН2=СН2 + Н2О
Особенно легко элиминируется вода из третичных спиртов.
Дегидрогенизация. Образование разных продуктов в реакциях дегидрогенизации
и окисления является важнейшим свойством, позволяющим отличить первичные,
вторичные и третичные спирты.
При пропускании паров первичного или вторичного, но не третичного
спирта над металлической медью при повышенной температуре происходит
выделение двух атомов водорода, и спирт превращается в альдегид:
Cu
RCH2OH > R-C-H + H2
200(300 (C |
O
Вторичные спирты дают в этих условиях кетоны:
R
Cu
CHOH > R’-C-R + H2
/ 200(300 (C |
R’ O
Окисление. Для окисления спиртов обычно используют сильные окислители:
KMnO4, K2Cr2O7 и H2SO4. При окислении первичных спиртов образуются
альдегиды, которые далее могут окисляться до карбоновых кислот:
RCH2OH + [O] > R-C-H + H2O
|
O
R
CHOH + [O] > R’-C-R + H2O
/ |
R’ O
Вторичные спирты при окислении превращаются в кетоны:
OH O
( [O] |
CH3CHCH3 > CH3CCH3
Пропанол(2 пропанон(2
Третичные спирты значительно труднее окисляются, чем первичные и
вторичные, причём с разрывом связей C(C(OH):
(а) O
O CH3
|
| (
H(C(OH +
CH3CH2C(CHCH3
Муравьиная
к(та 2(метилпентанон(3
CH3 O
O CH3
( [O] (б) |
| (
CH3CH2 ( C(OH CH3 (C(OH + CH3C(CHCH3
( Уксусная к(та
2(метилбутанон(3
CH3CHCH3
2,3(диметилпентанон(3 O
O
(в) |
|
CH3CCH3 + CH3CH2CCH3
Ацетон
бутанон(2
Двухатомные спирты, или гликоли (алкандиолы)
Двугидроксильные производные алканов (открыты Вюрцем) носят название
гликолей или алкандиолов. Гидроксилы в алкандиолах находятся либо при
соседних, либо более удалённых друг от друга углеродных атомах. 1,2-Гликоли
имеют сладкий вкус, откуда и происходит название класса. Низшие гликоли –
смешивающиеся с водой вязкие жидкости большей плотности, чем одноатомные
спирты. Кипят при высокой температуре. Гликоли с короткой углеродной цепью,
и прежде всего этиленгликоль, не растворяются в углеводородах и эфире, но
смешиваются с водой и спиртами; как растворители они ближе стоят к воде и
метанолу, чем к обычным органическим растворителям.
Способы получения
В принципе гликоли могут быть получены всеми синтетическими способами
получения спиртов.
Гидролиз дигалогенпроизводных:
ClCH2-CH2Cl + 2H2O > HOCH2-CH2OH + 2HCl
или
ClCH2-CH2OH + H2O > HOCH2-CH2OH + HCl
Восстановление сложных эфиров двухосновных кислот:
O O
| |
C2H5O-C-(CH2)n-C-OC2H5 + 8Na+6C2H5OH > HOCH2-(CH2)n-CH2OH +8C2H5ONa
3CH2=CH2 + 4H2O + 2KMnO4 > 3HOCH2-CH2OH + 2KOH + 2MnO2
Получение гликолей через хлоргидрины. Действием хлора и воды на олефин
можно получить хлоргидрин, например ClCH2-CH2OH. Хлоргидрин может быть
превращён гидролизом непосредственно в гликоль.
Пинаконы получают восстановлением (неполным) кетонов электрохимически
или действием магния в присутствии иода:
СH3 H3C CH3
H3C CH3
( | | 2H2O
| |
2 C=O + 2Mg + I2 > CH3-C-C-CH3 > CH3-C-C-CH3
( | |
| |
CH3 IMgO OMgI HO OH
Бутандиол-1,4 (важный продукт, являющийся промежуточным продуктом при
получении бутадиена и далее синтетического каучука) получают в
промышленности гидрированием бутин-2-диола-1,4 (НОН2С-С?С-СН2ОН).
В промышленности этиленгликоль синтезируют из окида этилена, который
получают окислением этилена:
250 (C H2O
2CH2=CH2 +O2 Ag CH2(CH2 H+ HOCH2CH2OH
/
O
((окись
Химические свойства гликолей
Так же как и одноатомные спирты, гликоли могут иметь первичные,
вторичные и третичные гидроксилы. Этиленгликоль – двупервичный спирт,
пропиленгликоль – первично-вторичный, пинакон – двутретичный. Всё сказанное
о свойствах первичных, вторичных и третичных спиртов приложимо и к
соответствующим гликолям.
1. Гликоли легко образуют хлорангидриды и бромгидрины при действии HCl
или HBr, но второй гидроксил замещается на галоген труднее (лучше
действием PCl5 или SOCl2).
2. При действии кислот гликоли дают два ряда сложных эфиров:
O O
O
| |
|
HOCH2-CH2-O-C-R R-C-O-CH2-CH2-O-C-R
3. При окислении первичных гликолей образуются альдегиды. Так,
окислением этиленгликоля получают глиоксаль:
[O] [O]
HOCH2-CH2OH > HOCH2-C=O > O=C-C=O
( |
|
H H
H
4. Дегидратация гликолей (кислотами или хлористым цинком) приводит к
образованию альдегидов (или кетонов). Считают, что механизм этой
дегидратации состоит в том, что сначала путём отрыва одной
гидроксильной группы протоном образуется карбониевый катион, а
затем атом водорода вместе со своей парой электронов (в виде гидрид-
иона) перемещается к карбониевому углероду (гидридное перемещение):
H
+ |
CH2-CH2 > CH2-CH > CH3-CH + H+
| | | |
H+ OH OH O O
|
H
При дегидратации пинаконов мигрирует не водород, а метильная группа и
происходит пинаколиновая перегруппировка, сопровождающаяся изменением
углеродного скелета:
СН3 СН3 СН3 СН3 СН3
| | ( | |
СН3-C (С-СН3 > С+-С-СН3 > СН3-С - С-СН3 + Н+
| | ( ( |
|
ОН ОН СН3 О СН3 О
Н+ |
пинаколин
пинакон Н
5. Альдегиды в кислой среде ацетилируют 1,2-гликоли, образуя
циклические ацетали (в кислой, но не щелочной среде в результате
гидролиза ацеталя регенерируются исходные вещества):
СН2-О
СН2-ОН Н+
| + О=С-СН3 С-СН3
СН2-ОН | Н+, Н2О
Н СН2-О
ацеталь
1,3-Гликоли способны реагировать подобным образом, давая шестичленные
циклические ацетали.
Для осуществления реакций ацетилирования необходима возможность
приведения обоих гидроксилов в одну плоскость, т.е. возможность свободного
вращения вокруг углерод-углеродной связи:
НО-С
|
С-ОН
Это условие соблюдается у гликолей с открытой цепью, но не всегда у
циклических.
Многоатомные спирты
Трёхатомные спирты – алкантриолы
Единственным важным представителем алкантриолов является глицерин
(пропантриол-1,2,3). Это очень вязкая бесцветная сладкая жидкость; т. пл.
17°С, т. кип. 290°С.
Глицерин был получен гидролизом жиров, которые являются сложными
эфирами глицерина и высших гомологов уксусной кислоты (и их олефиновых
изологов). При гидролизе жиров перегретым паром глицерин остаётся в водном
растворе, который отделяют от слоя расплавленных жирных кислот; после
отгонки воды из этого раствора может быть выделен глицерин.
Некоторое количество глицерина образуется при брожении сахаров.
В настоящее время осуществлён промышленный синтез глицерина из
пропилена, выделяемого из газов крекинга нефти. Этот синтез является
доказательством строения глицерина как пропантриола.
Сначала путём хлорирования пропилена при высокой температуре (500°С)
получают хлористый аллил, сохраняющий двойную связь (реакция Львова):
СН2=СН-СН3 + Сl2 > CH2=CH-CH2Cl + HCl
Затем присоединением хлора и воды хлористый аллил превращают в 1,3-
дихлорпропанол-2
Cl OH Cl
| | |
CH2=CH-CH2Cl + Cl2 + H2O > CH2-CH-CH2 + HCl
гидролиз которого даёт глицерин:
Cl OH Cl ОН ОН ОН
| | | | | |
CH2-CH-CH2 + 2Н2О > CH2-CH-CH2 + 2HСl
1,3-дихлорпропанол-2 пропантриол-1,2,3
(глицерин)
Глицерин даёт с кислотами три ряда сложных эфиров: моно-, ди- и
триэфиры. Для первых и вторых возможны изомеры: продукты этерификации по
первичным и вторичным группам. При действии HCl на глицерин получается
смесь двух монохлоргидринов глицерина, содержащая больше ?-монохлоргидрина
СН2ОН-СНОН-СН2Cl и меньше ?-изомера СH2OH-CHCl-CH2OH. При обработке щёлочью
оба изомера дают один и тот же глицидный спирт
|