Лучшие автора конкурса
1. saleon@bk.ru (223)
4. patr1cia@i.ua (45)
Мир, в котором я живу:
Результат
Архив

Главная / Учебники / Учебники на русском языке / БЖД / ЭКОЛОГИЯ И БЕЗОПАСНОСТЬ ЖИЗНЕДЕЯТЕЛЬНОСТИ. Кривошеин. Д.А. Учебник для ВУЗов.


БЖД - Учебники на русском языке - Скачать бесплатно


 
ЭКОЛОГИЯ И БЕЗОПАСНОСТЬ ЖИЗНЕДЕЯТЕЛЬНОСТИ

Под редакцией доктора физ.-мат. наук, чл.-корр. РЭА, профессора Л.А. Муравья

Рекомендовано Министерством образования
Российской Федерации в качестве учебного пособия
для студентов высших учебных заведений


 

ББК 20.1я73+68.9я73
Э40

Коллектив авторов:
Д.А. Кривошеин, Л.А. Муравей, Н.Н. Роева, О.С. Шорина,
Н.Д. Эриашвили, Ю.Г. Юровицкий, В.А. Яковлев

Рецензенты:
кафедра гидробиологии и общей экологии
Астраханского государственного технического университета
(зав. кафедрой д-р сельхоз. наук, проф. В.Ф. Зайцев),
д-р биол. наук, проф. В.А. Абакумов
и д-р биол. наук, проф. В.И. Лукьяненко

Главный редактор издательства Н.Д. Эриашвили

Э40
Экология и безопасность жизнедеятельности: Учеб. пособие для вузов/ Д.А. Кривошеин, Л.А.Муравей, Н.Н. Роева и др.; Под ред. Л.А. Муравья. – М.: ЮНИТИ-ДАНА, 2000. - 447 с.

ISBN 5-238-00139-8.

Представлен широкий круг общеэкологических проблем, ядром которых выступает идея коэволюции человека и биосферы. Пособие, направленное на формирование у обучающихся экологического мышления, содержит разделы по экологической безопасности, безопасности жизнедеятельности, источникам и уровням загрязнений биосферы, основам мониторинга, математическим моделям в экологии, а также экологическому менеджменту и экологическому праву.
Для студентов высших и средних специальных учебных заведений, а также менеджеров и руководителей экологических служб.

ББК 20.1я73+68.9я73

ISBN 5-238-00139-8                                              © Коллектив авторов, 2000 
                                                                                © ООО "ИЗДАТЕЛЬСТВО ЮНИТИ-ДАНА", 2000


ПРЕДИСЛОВИЕ

Идея ноосферы, ответственности человека за судьбу биосферы, а, следовательно, и за будущее человечества, сформулированная нашим соотечественником В. И. Вернадским, родилась в качестве альтернативы воззрению на мир как на безграничную кладовую ресурсов.
Сегодня нет острой необходимости доказывать, что принцип потребительства, точнее, условия природно-материальной жизни общества, послужившие его основанием, по существу уже исчерпаны. Изменения в биосфере, являющиеся результатом активной человеческой деятельности в нынешнем столетии (повышение температуры поверхности Земли, глобальное загрязнение воды, воздуха и почвы, опустынивание планеты, загрязнение Мирового океана, разрушение озонного слоя), известны сейчас каждому человеку. Поэтому современные концепции природопользования должны базироваться на принципах гармоничной оптимизаций условий взаимодействия человека с природой.
В учебном пособии, предлагаемом студентам вузов и колледжей, детально изложены основные аспекты глобальных экологических проблем второй половины XX столетия. Специфической особенностью данного учебного пособия является то, что при изложении основ экологии существенное место отводится математическим моделям, описывающим природные процессы, поддающиеся формализации.
Учение о ноосфере включает в себя в качестве необходимого компонента вопросы безопасности жизнедеятельности. Соответственно этому учебное пособие содержит разделы, в которых тематика безопасного взаимодействия человека со средой его обитания (природная, производственная, бытовая) объединена с вопросами защиты человека от негативных факторов чрезвычайных ситуаций.
Качество окружающей среды и анализ потенциальных возможностей ее основных экологических составляющих предлагают четкую организацию мониторинга системы наблюдений и контроля за ее состоянием. При этом токсикологические аспекты всестороннего анализа окружающей среды в условиях современного экологического кризиса приобретают особую значимость.
Новацией учебного пособия являются главы «Экологический менеджмент» и «Экологический маркетинг». Здесь анализируются социоприродная система как объект экологического контроля и управления, а также проблема экологической безопасности и механизм управления ею.
Жизнь заставляет общество создать систему внешнего регулирования – систему норм прав, охраняемых силой государства. Эти вопросы подробно излагаются в главе «Экологическое право».

Авторский коллектив

Л.А. Муравей, директор департамента МАТИ – Российского Государственного Технологического Университета им. К.Э. Циолковского, чл.-корр. РЭА, д-р физ.-мат. наук, проф. (гл. 6, 9–12)
Ю.Г. Юровицкий, ведущий научный сотрудник Института биологии развития РАН, д-р биол. наук, проф. МАТИ (гл. 1, 6)
О.С. Шорина, доц. кафедры промышленной экологии МАТИ, канд. биол. наук (§ 2.3, гл. 4, 5)
Л.А. Кривошеин, доц. кафедры промышленной экологии МАТИ, канд. техн. наук (гл. 13–26)
Н.Н. Роева,      зав. сектором Института глобального климата и экологии, зав. кафедрой Московского государственного заочного института пищевой промышленности, чл.-корр. РЭА, д-р хим. наук, проф. (гл. 3, § 2.1, 2.2)
Н.Д. Эриашвили, канд. ист. наук, проф. Московского заочного юридического института (гл. 10, 11)
В.А. Яковлев, ректор Кубанского института международного предпринимательства и менеджмента, д-р экон. наук, проф. (гл. 6)


РАЗДЕЛ 1. ОСНОВЫ ЭКОЛОГИИ

Мы не унаследовали Землю наших отцов.
Мы взяли ее в долг у наших детей.
(Из материалов ООН)

Глава 1. Основные понятия, законы и концепции
Глава 2. Мониторинг окружающей среды
Глава 3. Экотоксикология

1. Основные понятия, законы и концепции

1.1. Концепция экосистемы

Термин «экология» (от греч. «Ойкос» – дом, жилище и «логос» – наука) был предложен более 100 лет назад выдающимся немецким естествоиспытателем Эрнстом Геккелем.
В буквальном смысле экология – это наука об условиях существования живых организмов, их взаимодействиях между собой и окружающей средой.
Экология – также междисциплинарное системное научное направление [27, 32]. Возникнув на почве биологии, оно включает в себя концепции, технологии математики, физики, химии. Но экология и гуманитарная наука, поскольку от поведения человека, его культуры во многом зависит судьба биосферы, а вместе с ней и человеческой цивилизации.
В зависимости от специфики решаемых экологических задач существуют ее разнообразные прикладные направления: инженерная, медицинская, химическая, космическая экология, агроэкология, экология человека и т.д.
Что является предметом исследования экологии? Экология изучает организацию и функционирование живых систем более сложных, чем организм, т. е. надорганизменных систем. Эти системы получили название экологических систем или экосистем.
Экосистема – это безразмерная устойчивая система живых и неживых компонентов, в которой совершается внешний и внутренний круговорот вещества и энергии [27]. В качестве примеров можно привести лесные экосистемы, почвы, гидросферу и т.д.
Самой крупной экосистемой, предельной по размерам и масштабам, является биосфера. Биосферой называют активную оболочку Земли, включающую все живые организмы Земли и находящуюся во взаимодействии с неживой средой (химической и физической) нашей планеты, с которой они составляют единое целое. Биосфера нашей планеты существует 3 млрд. лет, она растет и усложняется наперекор тенденциям холодной энтропийной смерти; она несет разумную жизнь и цивилизацию. Биосфера существовала задолго до появления человека и может обойтись без него. Напротив, существование человека невозможно без биосферы.
Все остальные экосистемы находятся внутри биосферы и являются ее подсистемами. Крупная региональная экосистема, характеризующаяся каким-либо основным типом растительности, называется биомом. Например, биом пустыни или влажного тропического леса. Гораздо меньшей системой является популяция, включающая группу особей одного вида, т. е. единого происхождения, занимающая определенный участок. Более сложной системой, чем популяция, является сообщество, которое включает все популяции, занимающие данную территорию. Таким образом, популяция, сообщество, биом, биосфера располагаются в иерархическом порядке от малых систем к крупным.
Важное следствие иерархической организации состоит в том, что по мере объединения компонентов в более крупные функциональные единицы на новых ступенях иерархической лестницы возникают новые свойства, отсутствующие на предыдущих ступенях. Эти свойства нельзя предсказать исходя из свойств компонентов, составляющих новый уровень. Этот принцип получил название эмерджентности. Суть его: свойства целого невозможно свести к сумме свойств его частей. Например, водород и кислород, находящиеся на атомарном уровне, при соединении образуют молекулу воды, обладающую уже совершенно новыми свойствами. Другой пример. Некоторые водоросли и кишечно-полостные образуют систему коралловых рифов. Огромная продуктивность и разнообразие коралловых рифов – эмерджентные свойства, характерные только для рифового сообщества, но никак не для его компонентов, живущих в воде с низким содержанием биогенных элементов.
Деятельность организмов в экосистеме приспосабливает геохимическую среду к своим биологическим потребностям. Тот факт, что химический состав атмосферы и сильно забуференная физическая среда Земли резко отличаются от условий на любой другой планете Солнечной системы, позволил сформулировать гипотезу Геи [49]. Согласно этой гипотезе именно живые организмы создали и поддерживают на Земле благоприятные для жизни условия. В табл. 1.1 представлен сравнительные анализ состава атмосферы Земли, Марса, Венеры, а также гипотетической атмосферы, которая имелась на Земле до появления жизни.

 

Скорее всего, зеленые растения и некоторые микроорганизмы сыграли основную роль в формировании земной атмосферы с ее высоким содержанием кислорода и низким содержанием углекислого газа. Гипотеза Геи подчеркивает важность изучения и сохранения этих регулирующих механизмов, которые позволяют атмосфере приспосабливаться к загрязнениям, обусловленным деятельностью человека.
В состав экосистемы входят следующие компоненты:
• неорганические вещества (С, О2, N2, P, S, СО2, Н2О и др.), которые включаются в круговороты веществ;
• органические соединения (белки, углеводы, липиды и др.), связывающие биотическую (живую) и абиотическую (неживую) компоненты экосистемы;
• воздушная, водная и субстратная среды, включающие климатический режим и другие физические факторы;
• продуценты, автотрофные (самопитающиеся) организмы, в основном зеленые растения, которые, используя энергию солнечного света, синтезируют органические вещества из углекислого газа и воды;
• консументы первого порядка (растительноядные животные) и второго порядка (хищники), гетеротрофные организмы, в основном животные, питающиеся другими организмами;
• редуценты или деструкторы, в основном бактерии и грибы, живущие за счет разложения тканей умерших организмов.
Образование органических веществ зелеными растениями при использовании энергии солнечного света происходит в процессе фотосинтеза:

 

У зеленых растений Н2О окисляется с образованием газообразного кислорода О2, при этом СО2 восстанавливается до органических веществ (в приведенном уравнении органическое вещество – глюкоза). У фотосинтезирующих бактерий синтезируются органические вещества, но не образуется кислород. Дыхание - процесс, обратный фотосинтезу, при котором органические вещества окисляются с помощью атмосферного кислорода.
Редуценты, разлагая отмершие остатки организмов, освобождают биогенные элементы (С, О2, N2, P, S и др.), которые поступают в круговорот, необходимый для существования экосистем.
Каждый год продуцентами на Земле создается около 100 млрд. т. органического вещества, что составляет глобальную продукцию биосферы. За этот же промежуток времени приблизительно такое же количество живого вещества, окисляясь, превращается в СО2 и H2O в результате дыхания организмов. Этот процесс называется глобальным распадом. Но этот баланс существовал не всегда. Примерно 1 млрд. лет назад часть образуемого продуцентами вещества не расходовалась на дыхание и не разлагалась, так как в биосфере еще не было достаточного числа консументов. В результате этого органическое вещество сохранялось и задерживалось в осадках. Преобладание синтеза органических веществ над их разложением привело к уменьшению в атмосфере Земли углекислого газа и накоплению кислорода. Около 300 млн. лет назад особенно большой избыток органической продукции привел к образованию горючих ископаемых, за счет которых человек позже совершил промышленную революцию. А более чем 60 млн. лет назад выработалось колеблющееся стационарное соотношение между глобальной продукцией и распадом.
Однако за последние полвека в результате хозяйственной деятельности человека, связанной главным образом со сжиганием горючих ископаемых, концентрация СО2 в атмосфере повысилась, а О2 – уменьшилась, что создает критическую ситуацию для устойчивости атмосферы. Таким образом, важнейшей характеристикой экосистем является круговорот веществ, определяемый глобальной продукцией и распадом.
Следующей важнейшей характеристикой экосистем является их кибернетическое поведение. Кибернетическое поведение экосистем определяется тем, что они обладают развитыми информационными сетями, включающими потоки физических и химических сигналов, которые связывают все части экосистемы и управляют ею как единым целым. Отличие экосистем от кибернетических устройств, созданных человеком, заключается в том, что управляющие функции экосистемы сосредоточены внутри нее и диффузны. В кибернетических же системах, созданных человеком, управляющие функции направлены вовне и специализированы.
При сравнении кибернетической системы с экосистемой можно найти нечто общее. В той и другой управление основано на обратной связи. Известно, что энергия обратной связи крайне мала по сравнению с инициируемой ею энергией, которая возбуждается в системе, идет ли речь о техническом устройстве, организме или экосистеме. Устройства, осуществляющие обратную связь в живых системах, называются гомеостатическими механизмами. Гомеостаз в применении к организму означает поддержание его внутренней среды и устойчивость его основных физиологических функций. В применении к экосистеме гомеостаз означает сохранение ее постоянного видового состава и числа особей. Гомеостатические механизмы поддерживают стабильность экосистем, предупреждая полное выедание растений травоядными животными или катастрофические колебания численности хищников и их жертв и т.д.
Степень стабильности экосистем весьма различна и зависит как от жесткости окружающей среды, так и от эффективности внутренних управляющих механизмов. При этом выделяют два типа устойчивости:
• резистентная устойчивость – способность оставаться в устойчивом состоянии под нагрузкой. Так, лес из секвойи (высота деревьев выше 100 м, диаметр 6–11 м) устойчив к пожарам, поскольку эти деревья среди сородичей обладают самой толстой корой, содержат десятки тонн воды и т.д. Но если этот лес все-таки сгорит, то восстанавливается очень медленно;
• упругая устойчивость (противоположна резистентной) – способность быстро восстанавливаться. Так, заросли кустарника чапараля легко выгорают, но быстро восстанавливаются.
Помимо систем обратной связи стабильность обеспечивается избыточностью функциональных компонентов. Избыточность хорошо объясняется на примере организма, имеющего парные органы (руки, ноги, глаза, уши, почки, легкие) и многократно дублированные органы иммунитета. Избыточность характерна и для экосистемы. Если в экосистеме имеется несколько видов автотрофных зеленых растений, каждое из которых имеет свой температурный диапазон, то скорость фотосинтеза в экосистеме может оставаться неизменной, несмотря на колебания температуры.
Мозг человека представляет собой устройство с низкими энергетическими характеристиками и с огромными способностями к управлению, поскольку при относительно малой затрате энергии он способен продуцировать разнообразные мощные идеи. Это сделало человека самым могущественным существом на Земле. По крайней мере, это касается его способности изменять функционирование экосистем, в том числе и биосферы.
Основные характеристики экосистемы – ее размер, ее устойчивость, процессы самовосстановления, самоочищения.
Размер экосистемы – пространство, в котором возможно осуществление процессов саморегуляции и самовосстановления всех составляющих экосистему компонентов и элементов.
Самовосстановление природной экосистемы – самостоятельный возврат природной экосистемы к состоянию динамического равновесия, из которого она была выведена воздействием природных и антропогенных факторов.
Самоочищение – естественное разрушение загрязнителя в среде в результате процессов, происходящих в экосистеме.
Экосистемы можно классифицировать по разным признакам. Биомная классификация экосистем основана на преобладающем типе растительности в крупных регионах. В водных местообитаниях, где растительность малозаметна, в основе выделения экосистем находятся главные физические черты среды, например «стоячая вода», «текущая вода» и т.д.
Биомная классификация экосистем
Наземные биомы:
Тундра: арктическая и альпийская
Хвойные леса
Листопадный лес умеренной зоны
Степь умеренной зоны
Тропические гарсленд и саванна
Пустыня: травянистая и кустарниковая
Вечнозеленый тропический дождевой лес
Пресноводные экосистемы:
Лентические (стоячие воды): озера, пруды и т.д.
Логические (текучие воды): реки, ручьи и т.д.
Заболоченные угодья: болота и болотистые леса
Морские экосистемы:
Открытый океан (пелагическая)
Воды континентального шельфа (прибрежные воды)
Регионы апвеллинга (плодородные районы с продуктивным рыболовством)
Эстуарии (прибрежные бухты, проливы, устья рек и т.д.)
Использование в экосистемах различных источников энергии – Солнца, химического топлива – позволило выделить четыре фундаментальных вида экосистем по энергетическому признаку.
• Движимые солнцем несубсидируемые экосистемы - природные системы, полностью зависящие от прямого солнечного излучения. К их числу относятся открытые участки океанов, крупные участки горных лесов и большие глубокие озера. Экосистемы этого типа получают мало энергии и имеют малую продуктивность. Однако они крайне важны, так как занимают огромные площади. Это основной модуль жизнеобеспечения биосферы. Здесь очищаются большие объемы воздуха, возвращается в оборот вода, формируются климатические условия и т. д.
• Экосистемы, движимые Солнцем, но субсидируемые другими естественными источниками. Примерами такой экосистемы являются эстуарии рек, морские проливы и лагуны. Приливы и течения способствуют более быстрому круговороту минеральных элементов питания, поэтому эстуарии более плодородны, чем прилегающие участки океана или суши.
• Экосистемы, движимые Солнцем и субсидируемые человеком. Примером их являются агроэкосистемы (поля, коровники, свинарники, птицефабрики и т.д.).
• Экосистема, движимая топливом – индустриально-городская экосистема, в которой энергия топлива не дополняет, а заменяет солнечную энергию. Потребность в энергии плотно заселенных городов на 2–3 порядка больше того потока энергии, который поддерживает жизнь в естественных экосистемах, движимых Солнцем. Поэтому на небольшой площади города может жить большое количество людей.
Концепция продуктивности. Совокупность организмов в экосистеме в момент наблюдения называют биомассой, скорость продуцирования биомассы – продуктивностью. Различают первичную продуктивность - скорость, с которой продуценты (зеленые растения) в процессе фотосинтеза связывают энергию и запасают ее в форме органических веществ, и вторичную продуктивность - скорость образования биомассы консументами.
Высокая продуктивность сельского хозяйства в развитых странах поддерживается ценой больших вложений энергии и селекционной работой, направленной на выведение высокоурожайных сортов растений и высокопродуктивных пород животных. Этот вспомогательный поток энергии называется энергетической субсидией. Если в XIX в. страны мира делились на промышленно развитые и аграрные, то в XX возникла ситуация, при которой чем более развита страна, тем выше продуктивность ее сельского хозяйства. Именно развитые страны могут себе позволить соответствующие энергетические субсидии в сельское хозяйство.
Существует принципиальная разница в поведении энергии и материи. Материя циркулирует в системе; элементы и вещества, входящие в состав живого, имеют свои циклы, свои круговороты. Энергия, однажды использованная экосистемой, превращается в тепло и утрачивается для системы.
Пищевые цепи, пищевые сети. Перенос веществ и энергии пищи от ее источника – зеленых растений – через ряд организмов, от одного звена потребителей к другому называется пищевой или трофической цепью. Рациональное поведение звеньев трофической цепи определяется не эффективностью добывания пищи, а умеренностью. Поэтому в экосистемах остаются лишь виды, хорошо выполняющие свои биологические функции – живущие и дающие жить другим. Особенности человека как биологического вида в трофических цепях состоят в следующем:
• человек всеяден и может жить то за счет одних, то за счет других звеньев трофической цепи; это снимает с него узду умеренности;
• он может приближать к себе ресурсы с помощью одомашнивания растений и животных или привозить их, выходя из-под контроля среды в месте проживания;
• он может уходить из нарушенной им цепи в другую. Это дает человеку чувство свободы, однако это свобода от немедленного ответного воздействия и от ответственности перед потомками.
Трофическая структура экосистемы состоит из ряда параллельных и переплетающихся пищевых цепей и называется пищевой или трофической сетью.
Метаболизм и размеры особей. При неизменном энергетическом потоке в пищевой цепи более мелкие организмы имеют более высокую интенсивность обмена, более высокий удельный метаболизм (метаболизм в пересчете на 1 кг массы), чем крупные организмы. При этом мелкие организмы создают относительно меньшую биомассу, чем крупные. Так, биомасса бактерий, имеющихся в данный момент в экосистеме, гораздо ниже биомассы млекопитающих. Эта закономерность получила название правила Одума. Это правило заслуживает особого внимания, поскольку из-за антропогенного нарушения природы происходит измельчание организмов, которое неминуемо должно привести к общему снижению продуктивности и к разладу в экосистемах.
При измельчании особей выход биомассы с единицы площади в силу более плотного заселения пространства увеличивается. Слоны не дадут такой биомассы и продукции с единицы площади, которую способна дать саранча. Это – закон удельной продуктивности. Так, мелкие предприятия и фермы в сумме производят больший объем хозяйственной продукции, чем крупные, тем более крупнейшие.
Исчезновение видов, представленных крупными особями, меняет структуру экосистем. При этом организмы одной трофической группы замещают друг друга. Так, копытных в степи и саванне сменяют грызуны, а в ряде случаев – растительноядные насекомые. Это – принцип экологического дублирования.
В результате потери энергии при переносе ее по трофической цепи и таких факторов, как зависимость метаболизма от размеров особи, каждая экосистема приобретает определенную трофическую структуру. Ее можно представить в виде экологических пирамид. Если принять, что в вещество тела животного переходит в среднем 10% энергии съеденной пищи, то за счет 1 т растительной массы может образоваться 100 кг массы тела травоядного животного, а за счет последнего – 10 кг массы тела хищников.
Экологические факторы. На состояние окружающей среды и на живые организмы оказывают сильное влияние различные экологические факторы [27]. Экологический фактор – любое условие среды, способное оказывать прямое или косвенное воздействие на живые организмы. Экологические факторы делятся на три категории: 1) абиотические – факторы неживой природы; 2) биотические – факторы живой природы; 3) антропогенные – факторы человеческой деятельности.
Приспособительные реакции организмов к тем или иным факторам среды определяются периодичностью их воздействия. К первичным периодическим факторам относятся явления, связанные с вращением Земли, – смена времен года, суточная смена освещенности и т.д. Эти факторы действовали еще до появления жизни на Земле, и возникающие живые организмы должны были сразу адаптироваться к ним. Вторичные периодические факторы – следствия первичных, это влажность, температура, осадки и т.д. К непериодическим факторам относятся стихийные явления, а также факторы, имеющие техногенную природу.
Абиотические факторы наземной среды:
1. Свет. Поступающая от Солнца лучистая энергия распределяется по спектрам следующим образом. На видимую часть спектра с длиной волны 400-750 нм приходится 48% солнечной радиации. Наиболее важную роль для фотосинтеза играют оранжево-красные лучи, на которые приходится 45% солнечной радиации. Инфракрасные лучи с длиной волны более 750 нм не воспринимаются многими животными и растениями, но являются необходимыми источниками тепловой энергии. На ультрафиолетовую часть спектра – менее 400 нм – приходится 7% солнечной энергии.
2. Ионизирующее излучение – это излучение с очень высокой энергией, способное выбивать электроны из атомов и присоединять их к другим атомам с образованием пар положительных и отрицательных ионов. Источник ионизирующего излучения - радиоактивные вещества и космические лучи. Доза излучения (1 рад) – это такая доза излучения, при которой на 1 г ткани поглощается 100 эрг энергии. Единица дозы излучения, которую получает человек, называется бэр (биологический эквивалент рентгена); 1 бэр равен 0,01 Дж/кг.

 

В течение года человек в среднем получает дозу 0,1 бэр и, следовательно, за всю жизнь (в среднем 70 лет) 7 бэр.
3. Влажность атмосферного воздуха – параметр, характеризующий процесс насыщения его водяными парами. Разность между максимальным (предельным) насыщением и данным насыщением называется дефицитом влажности. Чем выше дефицит, тем суше и теплее, и наоборот. Растения пустынь приспосабливаются к экономному расходованию влаги. Они имеют длинные корни и уменьшенную поверхность листьев. Пустынные животные способны к быстрому и продолжительному бегу для длинных маршрутов на водопой. Внутренним источником воды у них служит жир, при окислении 100 г которого образуется 100 г воды.
4. Осадки являются результатом конденсации водяных паров. Они играют важную роль в круговороте воды на Земле. В зависимости от характера их выпадения выделяют гумидные (влажные) и аридные (засушливые) зоны.
5. Газовый состав атмосферы. Важнейшим биогенным элементом атмосферы, который участвует в образовании белков в организме, является азот. Кислород, поступающий в атмосферу в основном от зеленых растений, обеспечивает дыхание. Углекислый газ является естественным демпфером солнечного и ответного земного излучений. Озон выполняет экранирующую роль по отношению к ультрафиолетовой части солнечного спектра.
6. Температура на поверхности Земли определяется температурным режимом атмосферы и тесно связана с солнечным излучением. Для большинства наземных животных и растений температурный оптимум колеблется от 15 до 30°С. Некоторые моллюски живут в горячих источниках при температуре до 53°С, а некоторые сине-зеленые водоросли и бактерии – до 70–90°С. Глубокое охлаждение вызывает у насекомых, некоторых рыб и пресмыкающихся полную остановку жизни – анабиоз. Так, зимой карась вмерзает в ил, а весной оттаивает и продолжает обычную жизнедеятельность. У животных с постоянной температурой тела, у птиц и млекопитающих состояние анабиоза не наступает. У птиц в холодные времена отрастает пух, у млекопитающих – густой подшерсток. Животные, у которых зимой корма недостаточно, впадают в спячку (летучие мыши, суслики, барсуки, медведи).
Абиотические факторы водной среды:
На долю Мирового океана приходится 71% земной поверхности. Водная среда отличается от наземной плотностью и вязкостью. Плотность воды в 800 раз, а вязкость в 55 раз больше плотности воздуха. Наряду с этим важнейшими особенностями водной среды являются: подвижность, температурная стратификация, прозрачность и соленость, от которых зависит фотосинтез бактерий и фитопланктона и своеобразие среды обитания гидробионтов.
Биотические факторы окружающей среды:
Под биотическими факторами понимают совокупность влияний жизнедеятельности одних организмов на другие.
Антропогенные факторы окружающей среды.
Антропогенные факторы окружающей среды обязаны своим происхождением комплексной техногенной деятельности человека на Земле, включающей его бытовую сферу (сжигание мусора и отходов, строительство и т.д.) и производственную деятельность (все отрасли промышленной индустрии, сельское хозяйство, нефте-, газо- и горнодобывающие отрасли и т.д.).
Лимитирующие факторы: законы минимума и толерантности:
В 1840 г. Ю. Либихом был сформулирован закон минимума, согласно которому развитие растений лимитируется не теми элементами питания, которые присутствуют в почве в изобилии, а теми, которых очень мало (например, цинк или бор). Закон минимума справедлив и для животных, и для человека. Здоровье человека определяется в том числе и специфическими веществами, которые присутствуют в организме в ничтожных количествах (витамины, микроэлементы).
Любому живому организму или сообществу организмов необходимы не вообще температура, влажность, пища и т.д., а их определенный режим, т. е. границы допустимых колебаний этих факторов. Диапазон между экологическим минимумом и экологическим максимумом составляет пределы устойчивости, т. е. толерантности данного организма – этот закон толерантности был сформулирован в 1910 г. В. Шелфордом.
Ценность концепции лимитирующих факторов в том, что она дает возможность исследования самых сложных экологических ситуаций. Если для организма характерен широкий диапазон толерантности к фактору, который присутствует в среде в умеренных количествах, то такой фактор не может быть лимитирующим. Напротив, если организм обладает узким диапазоном толерантности к какому-нибудь изменчивому фактору, то этот фактор заслуживает изучения, так как может быть лимитирующим.
Биогеохимические циклы. В экосистемах очень важна роль биогеохимических циклов [27]. Биогенные элементы - С, О2, N2, Р, S, СО2, Н2О и другие – в отличие от энергии удерживаются в экосистемах и совершают непрерывный круговорот из внешней среды в организмы и обратно во внешнюю среду. Эти замкнутые пути называют биогеохимическими циклами. В каждом круговороте различают два фонда: резервный, включающий большую массу движущихся веществ, в основном небиологических компонентов, и подвижный, или обменный, фонд – по характеру более активный, но менее продолжительный, отличительной особенностью которого является быстрый обмен между организмами и их непосредственным окружением.
Биогеохимические циклы можно подразделять на два типа: 1) круговорот газообразных веществ с резервным фондом в атмосфере и гидросфере (океан), 2) осадочный цикл с резервным фондом в земной коре.
Из 90 с лишним элементов, встречающихся в природе, 30– 40 необходимы для живых организмов. Человек уникален не только тем, что его организм нуждается в 40 элементах, но и тем, что в своей деятельности использует почти все другие имеющиеся в природе элементы.
Круговорот азота. Азот составляет около 80% атмосферного воздуха и является крупнейшим резервуаром и предохранительным клапаном атмосферы. Однако большинство организмов не могут усваивать азот из воздуха. Между тем азот участвует в построении всех белков и нуклеиновых кислот. Усваивать азот из воздуха способны только некоторые организмы – бактерии, которые существуют в симбиозе с бобовыми растениями (горох, фасоль, соя). Они поселяются на корнях бобовых растений, образуя клубеньки, в которых и происходит химическая фиксация азота. Азот могут усваивать также сине-зеленые водоросли, называемые цианобактериями. Они образуют симбиоз с плавающим папоротником, который растет на заливаемых водой рисовых полях и до высадки рассады риса удобряет эти поля азотом. Первый этап фиксации атмосферного азота приводит к образованию аммиака и называется аммонификацией (рис. 1.1). Аммиак используется растениями для синтеза аминокислот, из которых состоят белки. Второй этап фиксации азота микроорганизмами – нитрификация, при этом образовавшийся аммиак преобразуется в соли азотной кислоты - нитраты. Нитраты усваиваются корнями растений и транспортируются в листья, где происходит синтез белков. Процесс разложения белков, осуществляемый особой группой бактерий, называется денитрификацией. Распад идет сначала с образованием нитратов, потом аммиака и, наконец, молекулярного азота. Содержание азота в живых тканях составляет около 3% его содержания в обменных фондах экосистем. Общее время круговорота азота – примерно 100 лет.

 

Круговорот углерода. Круговороты углекислоты и воды в глобальном масштабе – самые важные для человечества биогеохимические круговороты.
В круговороте СО2 атмосферный фонд невелик по сравнению с запасами углерода в океанах, ископаемом топливе и других резервуарах земной коры. До наступления индустриальной эры потоки углерода между атмосферой, материками и океанами были сбалансированы. Но в XX в. содержание СО2 постоянно растет в результате новых техногенных поступлений (сжигание горючих ископаемых, деградация почвенного слоя, сведение лесов и т.д.). В 1800 г. в атмосфере Земли содержалось 0,29% СОз; в 1958 - 0,315%, а к 1980 г. его содержание выросло до 0,335%. Если концентрация СО2 вдвое превысит доиндустриальный уровень, что может случиться в середине XXI в., то температура поверхности Земли и нижних слоев атмосферы в среднем повысится на 3°. В результате подъем уровня моря и перераспределение осадков могут погубить сельское хозяйство.

 

Биологический круговорот углерода достаточно прост; в нем участвуют только органические соединения и СО2 (рис. 1.2). Весь потребленный в процессе фотосинтеза углерод включается в углеводы, а в процессе дыхания весь углерод, содержащийся в органических соединениях, превращается в СО2. Растения потребляют ежегодно около 100 млрд. т. углерода, 30 млрд. т. возвращаются в атмосферу в результате дыхания растений. Остальные 70 млрд. т. обеспечивают дыхание и продукцию животных, бактерий и грибов в различных трофических цепях. Растения и животные ежегодно пропускают через себя 0,25–0,30% углерода, содержащегося в атмосфере и океанах. Весь обменный фонд углерода совершает круговорот каждые 300–400 лет.
Кроме СО2 в атмосфере присутствует в небольших количествах окись углерода – СО (примерно 0,1 части на миллион). Однако в городах с сильным автомобильным движением содержание СО может достигать 100 частей на миллион, что представляет уже угрозу для здоровья человека. Для сравнения можно привести другой пример: курильщик, потребляющий в день пачку сигарет, получает до 400 частей на миллион, что часто является причиной анемии и других сердечно-сосудистых заболеваний.
Другое соединение углерода в атмосфере – метан (СН4). Его содержание составляет 1,6 частей на миллион. Считается, что метан поддерживает стабильность озонового слоя в атмосфере.
Круговорот воды. Вода составляет значительную часть живых существ: в теле человека – по весу 60%, а в растительном организме достигает 95%. На круговорот воды на поверхности Земли затрачивается около трети всей поступающей на Землю солнечной энергии. Испарение с водных пространств создает атмосферную влагу. Влага конденсируется в форме облаков, охлаждение облаков вызывает осадки в виде дождя и снега; осадки поглощаются почвой или стекают в моря и океаны.
Для человечества важны фазы круговорота в пределах экосистем. Здесь происходят четыре процесса (рис. 1.3):
• перехват. Растительность перехватывает часть выпадающей в осадках воды до того, как она достигает почвы. Перехваченная вода испаряется в атмосферу. Величина перехвата в умеренных широтах может достигать 25% общей суммы осадков, это – физическое испарение;
• транспирация – биологическое испарение воды растениями, но не дождевая вода, а вода, заключенная в растении, т. е. экосистемная. Растения, потребляя около 40% общего количества осадков, играют главную роль в круговороте воды;
• инфильтрация – просачивание воды в почве. При этом часть инфильтрованной воды задерживается в почве тем сильнее, чем значительнее в ней коллодоидальный комплекс, соответствующий накоплению в почве перегноя;
• сток. В этой фазе круговорота избыток выпавшей с осадками воды стекает в моря и океаны.

 

Отличие циклов углерода и азота от круговорота воды состоит в том, что в экосистемах два названных элемента накапливаются и связываются, а вода проходит через экосистемы почти без потерь. Биосфера ежегодно использует на формирование биомассы 1% воды, выпавшей в виде осадков.
Круговорот фосфора. Фосфор – один из наиболее важных биогенных компонентов. Он входит в состав нуклеиновых кислот, клеточных мембран, систем аккумуляции и переноса энергии, костной ткани и дентина. Круговорот фосфора всецело связан с деятельностью организмов.
В отличие от азота и углерода резервуаром фосфора служат не атмосфера, а горные породы и отложения, образовавшиеся в прошлые геологические эпохи. Круговорот фосфора – типичный пример осадочного цикла.
Круговорот второстепенных элементов. Второстепенные элементы подобно жизненно важным мигрируют между организмами и средой, хотя и не представляют ценности для организмов. Но в окружающую среду часто попадают побочные продукты промышленности, содержащие высокие концентрации тяжелых металлов, радиоактивные элементы и ядовитые органические соединения.
Радиоактивный Sr-90 крайне опасен для человека и животных. По химическим свойствам он похож на кальций и поэтому, попав в организм, накапливается в костях и оказывается в опасном контакте с костным мозгом – кровеносной тканью.
Радиоактивный Cs-137 – по свойствам схож с калием и поэтому быстро циркулирует по пищевым цепям.
Sr-90 и Cs-137 - новые вещества, которые не существовали в природе до того, как человек расщепил атом. Они характеризуются длительными периодами полураспада. Аккумуляция этих радиоактивных изотопов в организме человека создает постоянный источник облучения, приводящего к канцерогенезу.
Для того чтобы количественно определить повторно используемую часть вещества в обороте, предложен коэффициент рециркуляции – отношение суммарных количеств вещества, циркулирующих между разными отделами системы, к общему потоку вещества через всю систему: CI = TSTc/TST, где СI – коэффициент рециркуляции, TSTc - рециркулируемая доля потока через систему и TST – общий поток вещества через систему.
Элементы, которые человек считает ценными (платина, золото), повторно используются на 90% и более. Однако коэффициент рециркуляции энергии равен нулю.

1.2. Популяция как элемент экосистемы

Если экосистема – основная функциональная единица экологии, предмет ее исследования, то популяция – основной элемент каждой экосистемы.
Популяция – это совокупность особей одного вида, способная к самовоспроизведению, более или менее изолированная в пространстве и во времени от других аналогичных совокупностей того же вида [27].
Популяция обладает биологическими свойствами, присущими составляющим ее организмам, и групповыми свойствами, присущими только популяции в целом. Как и отдельный организм, популяция растет, дифференцируется и поддерживает сама себя. Но такие свойства, как рождаемость, смертность, возрастная структура, характерны только для популяции в целом.
При описании популяций используют две группы количественных показателей: статические, характеризующие состояние популяции в какой-то определенный момент времени, и динамические, характеризующие процессы, протекающие в популяции за некоторый промежуток времени. Общая численность популяции выражается определенным количеством особей. Для ее оценки применяются различные методы. Если речь идет о крупных и хорошо заметных организмах, применяется аэрофотосъемка. В других случаях применяется метод мечения. Животных ловят, метят и отпускают обратно в природу. Через некоторое время производят новый отлов и по доле меченных животных определяют численность популяции.
Количественным показателем оценки популяции является плотность – численность популяции, отнесенная к единице занимаемого пространства. Для характеристики пространственного распределения особей применяют методы математической статистики, которые позволяют оценить дисперсию наблюдаемого распределения плотности и сопоставить ее со средним значением плотности. При случайном распределении дисперсия равна среднему значению: σ2 =  , при регулярном – дисперсия меньше среднего: σ2 <   и при пятнистом – дисперсия больше среднего: σ2 >  . В соответствии с этим отношение дисперсии к среднему значению есть показатель степени пространственной агрегированности. Если величина этого показателя примерно равна единице – распределение случайное; меньше единицы – регулярное; больше единицы – пятнистое.
Поскольку длительность существования популяции значительно превышает продолжительность жизни отдельных особей, в ней всегда присутствует смена поколений. И даже если численность популяции постоянна, то постоянство является результатом динамического равновесия прибыли и убыли особей.
Рождаемость – это число особей N, родившихся за некоторый промежуток времени dt – dNn/dt. Для сравнения популяций разной численности величину dNn/dt относят к общему числу особей N в начале промежутка времени dt. Полученную величину dNn/Ndt называют удельной рождаемостью. Единица времени, выбранная для оценки рождаемости, изменяется в зависимости от интенсивности размножения организмов, образующих популяцию. Для популяции бактерий единицей времени может быть час, для планктонных водорослей - сутки, для насекомых - недели или месяцы, для крупных млекопитающих – годы. Смертность – величина противоположная рождаемости. Она оценивается числом особей dNm, погибших за время dt. Удельная смертность выражается как dNm/Ndt.
Продолжительность жизни у разных видов различна, и, чтобы их сравнивать, строятся кривые выживания. На оси абсцисс откладывается время жизни, на оси ординат – число выживших (рис. 1.4). Кривая типа I (сильно выпуклая) характерна для популяций организмов, у которых смертность почти до конца жизни остается низкой. Этот тип кривой выживания характерен для многих видов крупных животных, в том числе и для человека. Другой крайний вариант – кривая типа III (сильно вогнутая) характерна для популяций, у которых смертность высока на ранних стадиях. Так, у личинок устриц и прорастающих желудей очень высокая смертность, но как только особи хорошо приживутся, продолжительность жизни резко увеличивается.

 

Кривая типа II (диагональная) соответствует постоянной смертности в течение всей жизни. Такие кривые встречаются у рыб, пресмыкающихся и птиц. Кривая выживания человека не всегда имела выпуклую форму. Например, кривые, построенные по надписям на надгробиях людей, живших в Римской империи в I-IV вв. н. э., были диагональными.
В популяции выделяют три экологические возрастные группы: пререпродуктивную, репродуктивную и пострепродуктивную. В быстрорастущих популяциях значительную долю составляют молодые особи. В популяциях, находящихся в стационарном состоянии, возрастное распределение относительно равномерное. В популяциях, численность которых снижается, содержится большая доля старых особей. У современного человека упомянутые три возрастные группы приблизительно одинаковы.
У первобытных людей пререпродуктивный период очень длителен, репродуктивный – короткий, а пострепродуктивный отсутствует совсем. У поденок, например, личиночное развитие занимает несколько лет, а во взрослом состоянии (в репродуктивный период) они живут несколько дней.
В среде, не ограничивающей рост популяции (нет ограничения в пище, пространстве и т.д.), удельная скорость роста, т. е. скорость, рассчитанная на одну особь, становится постоянной и максимальной. Этот показатель, обозначаемый r, является экспонентой в дифференциальном уравнении роста популяции в нелимитирующей среде.

                                                                  dN/dt = rN; r = dN/Ndt,                                                             (1.1)

интегрируя, получаем экспоненциальную зависимость:

Nt = N0ert,                                                                                   (1.2)

Где N0 – численность в начальный момент времени,
Nt – численность в момент времени t,
е – основание натурального логарифма.

Логарифмируя обе части равенства, получаем уравнение в форме, удобной для расчета:

In (Nt) = In (No) + rt,                                                                   (1.3)
откуда

r = (ln(Nt)-ln(N0))/t.                                                                    (1.4)

Когда популяция переходит в стационарное состояние, r называют внутренней скоростью естественного роста – биотическим потенциалом и обозначают rmax. Разницу между биотическим потенциалом и скоростью роста в реальных условиях называют сопротивлением среды. Сопротивление среды – это сумма всех лимитирующих факторов, препятствующих реализации rmах.
По форме кривых роста можно выделить два основных типа роста: описываемый J-образной кривой и S-образной (или сигмоидной) кривой (рис. 1.5). При J-образной кривой (рис 1.5 а) плотность популяции быстро возрастает по экспоненте, но затем, когда начинает действовать сопротивление среды, рост быстро прекращается. Этот тип роста может быть описан простым экспоненциальным уравнением (1.1) при заданном ограничении на величину N.

 

При типе роста, описываемом сигмоидной кривой (рис. 1.5 б), популяция сначала увеличивается медленно, затем рост ее все ускоряется, затем под влиянием среды рост постепенно замедляется и в конце концов достигает равновесия. Этот тип роста описывается простым логистическим уравнением:

dN/dt = rN0(K- N0)/К,

где dN/dt - скорость роста популяции,
r - удельная, или внутренняя, скорость роста,
N - величина популяции (численность),
К – максимально возможная величина популяции. Этот предел является верхней асимптотой сигмоидной кривой.
В природе экспоненциальный рост или не происходит вообще, или происходит в течение очень короткого времени. Эта модель используется, чтобы количественно охарактеризовать потенциальные возможности популяции к росту. Она позволяет выявить факторы, ограничивающие рост изучаемой популяции.
Константы r и К из логистического уравнения характеризуют два типа естественного отбора, которые позволяют обосновать разные типы экологических стратегий:
• r-стратегия характерна для популяций в начальный период увеличения ее численности. Она определяется отбором в условиях, когда плотность популяции мала и соответственно слабо выражено тормозящее воздействие конкуренции. Эта стратегия характерна, например, для временных водоемов, заполняющихся водой только в период дождей. r-отбор направлен на высокую плодовитость, быстрое достижение половой зрелости, достижение короткого жизненного цикла, способности выживания в неблагоприятный период в виде покоящихся стадий;
• K-стратегия связана с отбором, направленным на повышение выживаемости и величины предельной плотности К в условиях стабилизирующейся численности популяции при сильном воздействии конкуренции. K-отбор направлен на оценку конкурентоспособности и предусматривает возможные пути защищенности от хищников и паразитов, и выживаемости потомства, а также совершенствования механизмов регуляции численности.
В южных регионах распространено растение амброзия. Она растет по свалкам, залежам и другим недавно нарушенным местообитаниям. С другой стороны, в умеренном поясе в стабильном нижнем ярусе леса обитают травянистые растения. Если сравнить эти растения по продукции семян, окажется, что амброзия продуцирует семян в 50 раз больше, чем растения леса, и тратит в 5 раз больше чистой энергии на размножение. Амброзия – пример r-отбора, растения лесного сообщества – K-отбора.
Выделение r- и K-стратегий в чистом виде условно. На самом деле каждый вид организмов испытывает некую комбинацию r- и K-отбора, т. е. оставляемые отбором особи должны обладать и достаточно высокой плодовитостью, и развитой способностью выживания при наличии конкуренции.
Логистическая модель популяционного роста исходит из предположения о том, что для каждой популяции существует определенный равновесный уровень плотности (численности). Это уровень, при котором рождаемость равна смертности. Если равновесный уровень превышен, то в самой популяции или в окружающей среде что-то должно измениться так, чтобы смертность стала больше рождаемости, а популяция соответственно начала сокращать свою численность. Напротив, в случае понижения численности ниже равновесного уровня процессы, происходящие в популяции или в среде, должны привести к росту численности популяции. Отсюда возник подход к оценке механизмов, поддерживающих численность популяции, называемый регуляционизмом.
Регуляционизм – представление о том, что каждая популяция обладает равновесным уровнем плотности (численности) и существуют механизмы, направленные на поддержание этой плотности. Наблюдения и эксперименты позволили считать, что динамика численности любой популяции есть автоматически регулируемый процесс, а действие факторов, контролирующих популяцию, определяется плотностью самой популяции.
Принципиально иной подход к оценке механизмов, поддерживающих численность популяции, – это стохастизм, при котором придается случайно действующим факторам среды, например, погодным, основное значение. Стохастизм отрицает существование равновесного уровня, отклонение от которого автоматически возвращает популяцию к исходному уровню плотности (численности). С позиции стохастизма равновесный уровень численности есть результат ее усреднения за длительный срок.
Концепция саморегуляции. Сторонники и регуляционизма, и стохастизма, несмотря на различия, сходятся в том, что главная роль в ограничении роста численности популяции принадлежит факторам внешней среды. Однако регуляционисты считают, что факторы среды приводят в действие автоматически регулируемую плотность популяции, стохастисты отводят случайным факторам ведущую роль в определении численности популяции.
В начале 60-х годов нашего столетия была предложена концепция саморегуляции популяций, согласно которой в процессе роста популяции изменяется не только и не столько качество среды, в которой существует эта популяция, сколько качество самих составляющих ее особей. Следовательно, суть концепции саморегуляции состоит в том, что любая популяция способна регулировать свою численность так, чтобы не подрывать возобновляемые ресурсы местообитания, и так, чтобы не потребовалось вмешательства каких-либо внешних факторов, например хищников или неблагоприятной среды.
Основанием для выдвижения этой концепции послужили наблюдения за колониями мышей, содержащихся в лаборатории. В этих условиях при достаточном снабжении пищей возрастание плотности популяции приводило к увеличению у мышей надпочечников – органов эндокринной системы. Гормональные сдвиги, происходящие в организме под влиянием нервного перевозбуждения при перенаселении, ведут к повышению агрессивности животных, изменению репродуктивного потенциала (позднее половое созревание, снижение продуктивности, иногда полное прекращение размножения), снижению устойчивости к заболеваниям. Эти изменения обычно ведут к резкому снижению жизнеспособности особей и их массовой гибели.
Если в лабораторных условиях результатом стрессового состояния, вызванного перенаселенностью, является возрастание смертности, то в природных условиях – миграция в новые местообитания, где больше риск гибели от разнообразных причин.

1.3. Человек и биосфера

Давление человека на биосферу началось задолго до наступления этапа промышленной эволюции, ибо целые цивилизации погибли еще до нашей эры. Среди невозвратно погибших цивилизаций – Средиземноморская, цивилизация Майя, цивилизация острова Пасхи и др. Катастрофические экологические явления в прошлом были в основном связаны не с загрязнением природной среды, как сейчас, а с ее трансформациями. Главная из них – деградация почв, эрозия, засоление и т.д.
Вследствие антропогенной нагрузки на биосферу сегодня возникли новые экологические проблемы, которых не было в предыдущем XIX столетии [22, 27, 41]:
• началось потепление климата нашей планеты. В результате «парникового эффекта» температура поверхности Земли за последние 100 лет возросла на 0,5–0,6ºС. Источниками СО2, ответственными за большую часть парникового эффекта, являются процессы сжигания угля, нефти и газа и нарушение деятельности сообществ почвенных микроорганизмов тундры, потребляющих до 40% выбрасываемого в атмосферу СО2;
• значительно ускорился процесс подъема уровня Мирового океана. За последние 100 лет уровень моря поднялся на 10–12 см и сейчас этот процесс десятикратно ускорился. Это грозит затоплением обширных территорий, лежащих ниже уровня моря (Голландия, область Венеции, Санкт-Петербург, Бангладеш и др.);
• произошло истощение озонового слоя атмосферы Земли (озоносферы), задерживающего губительное для всего живого ультрафиолетовое излучение. Считается, что главный вклад в разрушение озоносферы вносят хлор-фтор-углероды (т. е. фреоны). Они используются в качестве хладоагентов и в баллончиках с аэрозолями. В 1996 г. была принята международная декларация, запрещающая использование наиболее опасных хлор-фтор-углеродов. При соблюдении условий декларации для полного восстановления озонового слоя потребуется не менее 100 лет и с начала XXI в. можно ожидать постепенный рост толщины «экрана» озоносферы;
• происходит интенсивное опустынивание и обезлесение планеты Земля. В Азии и Африке процесс опустынивания идет со скоростью 6 млн га в год. Главной причиной опустынивания является неоправданный рост поголовья скота, вытаптывающего растительный покров. В России это происходит в Калмыкии и Нижнем Поволжье. Интенсивно вырубаются леса в Бразилии и России. Сведение лесов приводит к снижению продукции кислорода, сопровождающей процесс фотосинтеза;
• интенсивно загрязняется Мировой океан. Загрязнение сопровождает разработку морских месторождений нефти и является результатом промышленных и коммунальных стоков в океан. Мировой океан в результате фотосинтетической деятельности одноклеточных зеленых водорослей дает 2/3 продукции кислорода, насыщающего атмосферу. Наибольшую опасность для жизни Океана как живого сообщества представляет нефтяное загрязнение. Сейчас в Океан ежегодно выливается 10 млн т нефти, углеводороды которой разрушаются микроорганизмами, превращающими нефть в углекислый газ и воду. Но защитные силы Океана не безграничны. Модельные расчеты показали, что одновременное попадание в Океан 25 млн т нефти уничтожит это уникальное живое сообщество, т. е. буквально перекроет кислород биосфере.
Поступление кислорода в атмосферу Земли в результате фотосинтетической деятельности ежегодно составляет 240– 300 млрд т. Организмы биосферы расходуют на дыхание 90% этого количества, оставшиеся 10% – 24–30 млрд т расходуются промышленностью. Но к началу XXI в. промышленность при нынешних темпах ее развития может потреблять уже 57– 60 млрд т кислорода. Если не ограничить и не изменить технологию сжигания горючих ископаемых, то через 100 лет содержание кислорода в атмосфере снизится с 21 до 8%.
Химические и радиационные загрязнения природы, уменьшение толщины озонового слоя подавляют прежде всего иммунную систему живых организмов, в том числе и человека, вызывая иммуннодефицитное состояние организма. При заболевании СПИДом особый вирус поражает иммунную систему человека. В результате организм теряет защиту и может погибнуть от самого простого заболевания. В отличие от вируса СПИДа, обладающего огромной разрушительной силой, загрязнения действуют медленно, но столь же губительно.
В результате безудержной техногенной агрессии средняя продолжительность жизни в России находится в конце четвертого десятка стран мира, по выживаемости детей в возрасте до 1 года (по детской смертности) – в конце пятого десятка стран (на уровне африканских стран), отставая от Индии, Бразилии и Южной Кореи. Сегодня смертность в России превышает рождаемость в 1,7 раза. По прогнозам демографов, к 2000 г. на двух ушедших из жизни российских граждан придется только один новорожденный. В России сложилась беспрецедентная ситуация со смертностью мужчин в трудоспособном возрасте от несчастных случаев, отравлений и травм. Для стран Европы, США и Японии доля умерших от этих причин составляет 5–5,5%, а в России 22–25%. В России у 40% мужчин средняя продолжительность жизни составляет 58 лет. Столь драматическая ситуация, уже приведшая к депопуляции, когда смертность существенно возрастает, а рождаемость падает, свойственна исключительно нашей стране. Это является результатом резкого ухудшения экологической обстановки, разрушения ранее существовавших в стране систем общей профилактики заболеваний и пренебрежения к правилам и нормам безопасности жизнедеятельности.
Одним из главных факторов, приведших к ухудшению природной среды России, стало необоснованное развитие отраслей минерально-сырьевого комплекса – добывающей промышленности. Численность населения России составляет менее 3% общемировой, но до последнего времени Россия производила свыше 20% мирового объема продукции горнодобывающей промышленности, и большая часть этого сырья экспортировалась. В этом отношении Россия мало отличается от стран Третьего мира, которые являются сырьевыми придатками промышленно развитых стран. Структура российской добывающей промышленности такова, что на производство ее конечной продукции расходуется менее 7% сырьевой массы, извлекаемой из недр Земли. Здесь и терриконы вблизи угольных шахт, насыпанные прямо на плодородный чернозем, и неполное извлечение полезных ископаемых из недр, и сжигание попутного газа в факелах, и т.д. Так, например, для поднятия нефти из скважин во всем мире применяется газ, а в России из-за отсутствия соответствующего компрессорного оборудования в скважину закачивается вода. В результате из скважин берут только 30% нефти, вода смешивается с нефтью и т.д. К тому же именно в добывающей промышленности наблюдается самый высокий уровень травматизма среди работающих.
В структуре экспорта России кроме сырой нефти, газа и неразделанного на пиломатериалы леса имеется металл и минеральные удобрения. На мировом рынке у России покупают и черные, и цветные металлы. Однако металлургия – одно из самых экологически грязных производств. Поэтому покупатели нашей металлургической продукции предпочитают иметь грязные производства в России, а не у себя дома. То же самое относится к промышленности минеральных удобрений. Чтобы минимизировать, а затем и вовсе уйти от последствий интенсивного загрязнения среды обитания, необходимо активно внедрять чистые технологии, что позволит значительно увеличить продолжительность жизни; развивать наукоемкие технологии, широкомасштабно используя компьютеризацию; совершенствовать постоянно действующее эффективное природоохранное законодательство.
Мировой опыт показывает, что для стабилизации экологической ситуации в стране нужно затратить не менее 3% валового национального продукта, а для улучшения экологической ситуации – необходимо уже 5%. Такие расходы несут Германия, Англия и Швеция. Самые большие затраты на природоохранные мероприятия у США – 7%. По данным 1989 г., затраты СССР на эти цели составляли 1,5%, а в России, по данным Комитета по экологии Государственной Думы, выделяется на эти цели не более 0,5%.

Контрольные вопросы

1. Дайте определение экосистемы.
2. Как соотносятся время существования биосферы и вида Homo sapiens?
3. Как вы понимаете гипотезу Геи?
4. Сформулируйте принцип эмерджентности.
5. В результате каких процессов биосфера накопила горючие ископаемые – основу промышленной революции?
6. Расскажите о биомной и энергетической классификации экосистем.
7. Сформулируйте правило Одума, закон удельной продуктивности и принцип экологического дублирования.
8. Перечислите абиотические факторы наземной среды.
9. Сформулируйте законы минимума и толерантности.
10. Опишите круговороты азота, углерода и воды.
11. Дайте определение популяции и ее свойств.
12. Что такое r- и K-стратегии отбора?
13. Изложите концепции регуляционизма, стохастизма и саморегуляции.
14. В чем заключаются глобальные экологические проблемы XX в.?
15. Что нужно для стабилизации экологической ситуации в России?


Глава 2. Мониторинг окружающей среды

2.1. Понятие экологического мониторинга и его задачи

Всесторонний анализ окружающей среды предусматривает оценку ее экологического состояния и влияние на нее естественных и антропогенных воздействий. Характер этих воздействий весьма специфичен. Лимитирующим показателем уровня естественных и антропогенных воздействий является предельно-допустимая экологическая нагрузка (ПДЭН), которая во многих странах установлена в связи с тем, что нормальное функционирование и устойчивость экосистем и биосферы возможны при непревышении определенных предельных нагрузок на них.
Состояние биосферы, непрерывно меняющееся под влиянием естественных факторов, обычно возвращается в первоначальное. Например, изменения температуры и давления, влажности воздуха и почвы происходят в пределах некоторых постоянных средних значений. Как правило, крупные экосистемы под влиянием природных процессов изменяются чрезвычайно медленно. Существующие в мире экологические службы (гидрометеорологическая, сейсмическая, ионосферная и др.) проводят контроль за изменением этих процессов.
Изменение состояния биосферы под влиянием антропогенных факторов происходит в более короткие временные сроки. Поэтому с целью измерения, оценки и прогноза антропогенных изменений абиотической составляющей биосферы (в первую очередь загрязнений) и ответной реакции биоты на эти изменения, а также последующих изменений в экосистемах в результате антропогенных воздействий создана информационная система экологического мониторинга.
Экологический мониторинг является комплексным мониторингом биосферы. Он включает в себя контроль изменений состояния окружающей среды под влиянием как природных, так и антропогенных факторов.
Основные задачи экологического мониторинга антропогенных воздействий:
• наблюдение за источниками антропогенного воздействия;
• наблюдение за факторами антропогенного воздействия;
• наблюдение за состоянием природной среды и происходящими в ней процессами под влиянием факторов антропогенного воздействия;
• оценка физического состояния природной среды;
• прогноз изменения состояния природной среды под влиянием факторов антропогенного воздействия и оценка прогнозируемого состояния природной среды.
Термин «мониторинг» образован от лат. «монитор» – «наблюдающий», «предостерегающий». Существует несколько современных формулировок определения мониторинга. Некоторые исследователи под мониторингом понимают систему повторных наблюдений за состоянием объектов окружающей среды в пространстве и во времени в соответствии с заранее подготовленной программой [52]. Более конкретная формулировка определения мониторинга предложена академиком РАН Ю.А. Израэлем в 1974 г., в соответствии с которой под мониторингом состояния природной среды, и в первую очередь загрязнений и эффектов, вызываемых ими в биосфере, подразумевают комплексную систему наблюдений, оценки и прогноза изменений состояния биосферы или ее отдельных элементов под влиянием антропогенных воздействий [14].
Программа ЮНЕСКО от 1974 г. определяет мониторинг как систему регулярных длительных наблюдений в пространстве и во времени, дающую информацию о прошлом и настоящем состояниях окружающей среды, позволяющую прогнозировать на будущее изменение ее параметров, имеющих особенное значение для человечества [51].

2.2. Классификация мониторинга

Мониторинг включает в себя следующие основные практические направления:
• наблюдение за состоянием окружающей среды и факторами, воздействующими на нее;
• оценку фактического состояния окружающей среды и уровня ее загрязнения;
• прогноз состояния окружающей среды в результате возможных загрязнений и оценку этого состояния.

 

Объектами мониторинга являются атмосфера (мониторинг приземного слоя атмосферы и верхней атмосферы); атмосферные осадки (мониторинг атмосферных осадков); поверхностные воды суши, океаны и моря, подземные воды (мониторинг гидросферы); криосфера (мониторинг составляющих климатической системы).
По объектам наблюдения различают: атмосферный, воздушный, водный, почвенный, климатический мониторинг, мониторинг растительности, животного мира, здоровья населения и т.д.
Существует классификация систем мониторинга по факторам, источникам и масштабам воздействия (рис. 2.2 и табл. 2.2).
Мониторинг факторов воздействия – мониторинг различных химических загрязнителей (ингредиентный мониторинг) и разнообразных природных и физических факторов воздействия (электромагнитное излучение, солнечная радиация, шумовые вибрации).
Мониторинг источников загрязнений – мониторинг точечных стационарных источников (заводские трубы), точечных подвижных (транспорт), пространственных (города, поля с внесенными химическими веществами) источников.

 

По масштабам воздействия мониторинг бывает пространственным и временным.
По характеру обобщения информации различают следующие системы мониторинга:
• глобальный – слежение за общемировыми процессами и явлениями в биосфере Земли, включая все ее экологические компоненты, и предупреждение о возникающих экстремальных ситуациях;
• базовый (фоновый) – слежение за общебиосферными, в основном природными, явлениями без наложения на них региональных антропогенных влияний;
• национальный – мониторинг в масштабах страны;
• региональный – слежение за процессами и явлениями в пределах какого-то региона, где эти процессы и явления могут отличаться и по природному характеру, и по антропогенным воздействиям от базового фона, характерного для всей биосферы;
• локальный – мониторинг воздействия конкретного антропогенного источника;
• импактный – мониторинг региональных и локальных антропогенных воздействий в особо опасных зонах и местах.
Классификация систем мониторинга может основываться и на методах наблюдения (мониторинг по физико-химическим и биологическим показателям, дистанционный мониторинг).
Химический мониторинг – это система наблюдений за химическим составом (природного и антропогенного происхождения атмосферы, осадков, поверхностных и подземных вод, вод океанов и морей, почв, донных отложений, растительности, животных и контроль за динамикой распространения химических загрязняющих веществ. Глобальной задачей химического мониторинга является определение фактического уровня загрязнений окружающей среды приоритетными высокотоксичными ингредиентами, представленными в табл. 2.1.

 

Примечание: И- импактный, Р - региональный, Б - базовый, Г – глобальный.

Физический мониторинг – система наблюдений за влиянием физических процессов и явлений на окружающую среду (наводнения, вулканизм, землетрясения, цунами, засухи, эрозия почв и т.д.).
Биологический мониторинг – мониторинг, осуществляемый с помощью биоиндикаторов (т. е. таких организмов, по наличию, состоянию и поведению которых судят об изменениях в среде).
Экобиохимический мониторинг – мониторинг, базирующийся на оценке двух составляющих окружающей среды (химической и биологической).
Дистанционный мониторинг – в основном, авиационный, космический мониторинг с применением летательных аппаратов, оснащенных радиометрической аппаратурой, способной осуществлять активное зондирование изучаемых объектов и регистрацию опытных данных.
В зависимости от принципа классификации имеются различные системы мониторинга (табл. 2.2).
Наиболее универсальным является комплексный экологический мониторинг окружающей среды.
Комплексный экологический мониторинг окружающей среды – это организация системы наблюдений за состоянием объектов окружающей природной среды для оценки их фактического уровня загрязнения и предупреждения о создающихся критических ситуациях, вредных для здоровья людей и других живых организмов. Различают мониторинг локальный, региональный и фоновый.
При проведении комплексного экологического мониторинга окружающей среды: а) проводится постоянная оценка экологических условий среды обитания человека и биологических объектов (растений, животных, микроорганизмов и т.д.), а также оценка состояния и функциональной целостности экосистем; б) создаются условия для определения корректирующих действий в тех случаях, когда целевые показатели экологических условий не достигаются.
Система комплексного экологического мониторинга предусматривает:
• выделение объекта наблюдения;
• обследование выделенного объекта наблюдения;
• составление для объекта наблюдения информационной модели;
• планирование измерений;
• оценку состояния объекта наблюдения и идентификацию его информационной модели;
• прогнозирование изменения состояния объекта наблюдения;
• представление информации в удобной для использования форме и доведение ее до потребителя.

 


Основные цели комплексного экологического мониторинга состоят в том, чтобы на основании полученной информации:
1) оценить показатели состояния и функциональной целостности экосистем и среды обитания человека (т. е. провести оценку соблюдения экологических нормативов);
2) выявить причины изменения этих показателей и оценить последствия таких изменений, а также определить корректирующие меры в тех случаях, когда целевые показатели экологических условий не достигаются (т. е. провести диагностику состояния экосистем и среды обитания);
3) создать предпосылки для определения мер по исправлению возникающих негативных ситуаций до того, как будет нанесен ущерб, т. е. обеспечить заблаговременное предупреждение негативных ситуаций.
В Российской Федерации функционирует несколько ведомственных систем мониторинга, например, служба наблюдения за загрязнением окружающей среды Росгидромета, служба мониторинга водных ресурсов Роскомвода, служба агрохимических наблюдений и мониторинга загрязнений сельскохозяйственных земель Роскомзема и др.

2.3. Критерии оценки качества окружающей среды

Государственная экологическая экспертиза представляет собой систему государственных природоохранных мероприятий, направленных на проверку соответствия проектов, планов и мероприятий в области народного хозяйства и природных ресурсов требованиям защиты окружающей среды от вредных воздействий.
Токсикологическая характеристика технологических процессов требует обоснования рекомендаций по такому изменению производства, чтобы уменьшить количество вредных полупродуктов или побочных соединений или исключить их, и медико-технических требований к планированию производственных помещений, аппаратуре, санитарно-техническому оборудованию, в том числе очистному или рассеивающему, и – в случае необходимости – к индивидуальным средствам защиты. В основе этого лежит установление предельно допустимых концентраций (ПДК) вредных веществ в различных средах.
В воздушной среде:
• ПДКр.з – предельно допустимая концентрация вещества в воздухе рабочей зоны, мг/м3. Эта концентрация при ежедневной (кроме выходных дней) работе в пределах 8 ч или другой продолжительности, но не более 41 ч в неделю, в течение всего рабочего стажа не должна вызывать в состоянии здоровья настоящего и последующего поколений заболеваний или отклонений, обнаруживаемых современными методами исследования в процессе работы. Рабочей зоной считается пространство высотой до 2 м над уровнем пола или площадки, на которой находятся места постоянного или временного пребывания работающих;
• ПДКМ.Р – предельно допустимая максимальная разовая концентрация вещества в воздухе населенных мест, мг/м3. Эта концентрация при вдыхании в течение 20 мин не должна вызывать рефлекторных (в том числе субсенсорных) реакций в организме человека;
• ПДКС.С – предельно допустимая среднесуточная концентрация токсичного вещества в воздухе населенных мест, мг/м3. Эта концентрация не должна оказывать на человека прямого или косвенного вредного воздействия при неограниченно продолжительном вдыхании.
В водной среде:
• ПДКВ – предельно допустимая концентрация вещества в воде водоема хозяйственно-питьевого и культурно-бытового водопользования, мг/л. Эта концентрация не должна оказывать прямого или косвенного влияния на органы человека в течение всей его жизни, а также на здоровье последующих поколений и не должна ухудшать гигиенические условия водопользования;
• ПДКВ.Р – предельно допустимая концентрация вещества в воде водоема, используемого для рыбохозяйственных целей, мг/л;
• Интегральные показатели для воды:
БПК – биологическая потребность в кислороде – количество кислорода, использованного при биохимических процессах окисления органических веществ (исключая процессы нитрификации) за определенное время инкубации пробы (2, 5, 20, 120 суток), мг О2/л воды (БПКП – за 20 суток, БПК5 – за 5 суток);
ХПК – химическая потребность в кислороде, определенная бихроматным методом, т. е. количество кислорода, эквивалентное количеству расходуемого окислителя, необходимого для окисления всех восстановителей, содержащихся в воде, мг О2/л воды.
По отношению БПКП /ХПК судят об эффективности биохимического окисления веществ.
В почве:
• ПДКП – предельно допустимая концентрация вещества в пахотном слое почвы, мг/кг. Эта концентрация не должна вызывать прямого и косвенного отрицательного влияния на здоровье человека, а также на самоочищающую способность почвы;
• ПДКПР (ДОК) – предельно допустимая концентрация (допустимое остаточное количество) вещества в продуктах питания, мг/кг.
Если величина ПДК в различных средах не установлена, действует временный гигиенический норматив ВДК (ОБУВ) – временно допустимая концентрация (ориентировочно безопасный уровень воздействия) вещества. Временный норматив устанавливается на определенный срок (2–3 года).
Различные вещества могут оказывать сходное неблагоприятное воздействие на организм. Например, существует эффект суммации для диоксида азота и формальдегида, фенола и ацетона, этанола и целой группы органических веществ. Для токсичных веществ безопасная концентрация определяется соотношением С/ПДК <  1, где С – фактическая концентрация вещества в среде.
Допустим, что в воздухе концентрация фенола С ф = 0,345 мг/л, ацетона С ац = 0,009мг/л, а ПДК ф = 0,35мг/л, ПДК ац = 0,01 мг/л. Таким образом, для каждого из веществ указанное соотношение меньше 1:

С1/ПДК1 < 1;   С2/ПДК2 < 1.

Но поскольку эти вещества обладают эффектом суммации, то общее загрязнение фенолом и ацетоном превысит предельно допустимое, так как

 

Таким образом, сумма отношений концентраций к ПДК веществ, обладающих эффектом суммации, не должна превышать единицы.
Для более полной оценки качества среды сравнительно недавно стали использовать другой критерий – ПДЭН – предельно допустимую экологическую нагрузку, для воды – это ПДС – предельно допустимый сброс, г/с; для воздуха – ПДВ – предельно допустимый выброс, г/с. Эти величины характеризуют нагрузку, оказываемую предприятием на окружающую среду в единицу времени, и должны обязательно входить в экологический паспорт (или другой подобный документ) предприятия.
Недостатком изложенной выше схемы критериев оценки качества среды является разрозненность природоохранных функций различных министерств и ведомств, а также часто очень различающиеся значения ПДК в разных странах.

Контрольные вопросы

1. Какие основные задачи решают системы мониторинга окружающей среды?
2. Что означает термин «мониторинг»? Приведите формулировку определения мониторинга, данную программой ЮНЕП в 1974 г.
3. Какие типы классификации экологического мониторинга вы знаете?
4. Какие два основных критерия оценки качества окружающей среды вы знаете? В чем их различие?
5. Какие основные виды ПДК (предельно допустимой концентрации) для воздушной среды вы знаете? Укажите единицы измерения.
6. Приведите два различных вида ПДК для водной среды. В чем их различие? Каковы единицы измерения?
7. Какие существуют интегральные показатели качества воды? Каковы их единицы измерения?
8. Что такое эффект суммации? Приведите примеры.
9. Что означают аббревиатуры ВДК, ОБУВ, ПДЭН? В каких случаях эти показатели применяются для оценки качества среды? Каковы их единицы измерения?

Глава 3. Экотоксикология

3.1. Загрязнение окружающей среды токсикантами и количественные критерии оценки его фактического уровня

Активизация хозяйственно-производственной деятельности человека в современных условиях природопользования и глобальные масштабы ее антропогенного воздействия на главные составляющие биосферы создают ситуацию острого экологического кризиса, обусловленную деградацией объектов окружающей среды. В связи с этим для оптимизации условий взаимодействия человека с природой важной представляется роль всестороннего анализа окружающей природной среды [16], главными задачами которого является комплексная оценка экологического резерва биосферы и ее потенциальных возможностей к самовосстановлению и самоочищению, анализ широкого спектра различных типов воздействий (как приоритетных, так и не приоритетных) на природные экосистемы и изучение специфических особенностей этих воздействий [15].
В последние годы особую значимость и актуальность приобретают токсикологические аспекты всестороннего анализа окружающей среды [43, 9, 53]. Серьезной проблемой является установление пороговости эффекта токсикологического воздействия в системах «токсикант – окружающая среда» и «токсикант – живой организм» и определение зависимости «доза – ответная реакция», которая послужила активным импульсом для развития нового направления в экологии, базирующегося на фундаментальных основах токсикологической, бионеорганической и экологической химии, называемого экотоксикологией. Научная значимость экотоксикологии состоит в изучении современных представлений токсичности и канцерогенности элементов и их соединений, исследовании специфических биогеохимических особенностей поведения токсикантов в окружающей среде, механизма их распространения и метаболизма; установлении взаимосвязи между необходимостью и токсичностью элементов; определении локализации канцерогенных ионов; оценке порогового эффекта токсикологического воздействия.
Подобный целостный комплекс достаточно сложных научно-прикладных задач, решение которых предусматривается в рамках экотоксикологии, в большинстве случаев позволяет произвести количественную оценку порогового эффекта токсикологического воздействия, имеющего место в системах «токсикант – окружающая среда» и «токсикант – живой организм» согласно уравнению [34]:

Dr = Do - (De + Dm )

где Dr – доза вредного вещества, достигшая рецептора;
Do – доза вредного вещества, введенная в организм;
De и Dm – дозы вредного вещества, соответственно выделенные из организма и обезвреженные в процессе продвижения яда к рецептору.

Концепция пороговости предполагает высокое качество среды и полную безопасность для человека и любых популяций при условии загрязнения этой среды ниже определенного уровня, воздействие которого на любые организмы меньше некоторого порогового значения.
Загрязнение окружающей среды – это процесс привнесения в среду или возникновение в ней новых, обычно не характерных для нее физических, химических, биологических агентов, оказывающих негативное воздействие. Существуют три этапа загрязнений: физическое (солнечная радиация, электромагнитное излучение и т.д.), химическое (аэрозоли, тяжелые металлы и т.д.), биологическое (бактериологическое, микробиологическое). Каждый тип загрязнения имеет характерный и специфичный для него источник загрязнения – природный или хозяйственный объект, являющийся началом поступления вещества-загрязнителя в окружающую среду. Различают природные и антропогенные источники загрязнения.
Основные природные источники поступления токсикантов в окружающую среду – ветровая пыль, лесные пожары, вулканический материал, растительность, морские соли.
Антропогенные источники – это первичное и вторичное производство цветных металлов, стали, чугуна, железа; добыча полезных ископаемых; автомобильный транспорт; химическая промышленность; производство меди, фосфатных удобрений; процессы сжигания угля, нефти, газа, древесины, отходов и др. Антропогенный поток поступления токсикантов в окружающую среду превалирует над естественным (50–80%) и лишь в некоторых случаях сопоставим с ним.
В качестве критериев количественной оценки уровня загрязнения окружающей среды могут быть использованы индекс загрязнения, предельно допустимая, фоновая и токсическая концентрации.
Индекс загрязнения (ИЗ) – показатель, качественно и количественно отражающий присутствие в окружающей среде вещества-загрязнителя и степень его воздействия на живые организмы.
Предельно допустимая концентрация (ПДК) – количество вредного вещества в окружающей среде, которое при постоянном контакте или при воздействии за определенный промежуток времени практически не влияет на здоровье человека. Предельно допустимые концентрации веществ, загрязняющих биосферу, вводились как нормирующие показатели во многих странах, в том числе и в нашей стране. Они устанавливались в приземной атмосфере, водах, почвах, растениях, продуктах питания (табл. 3.1–3.4).
Существующая система ПДК недостаточно достоверно информативна, поскольку предусматривает определение индивидуального токсиканта, дистанцируясь от вопроса о комплексном воздействии различных загрязнителей. Между тем совместное действие, например, органокомплексов тяжелых металлов кардинально меняет ПДК, экспериментально полученные для отдельного тяжелого металла.
Фоновая концентрация – содержание вещества в объекте окружающей среды, определяемое суммой глобальных и региональных естественных и антропогенных вкладов в результате дальнего или трансграничного переноса.
Под токсической концентрацией понимают либо концентрацию вредного вещества, которое способно при различной длительности воздействия вызывать гибель живых организмов, либо концентрацию вредного начала, вызывающую гибель живых организмов в течение 30 суток в результате воздействия на них вредных веществ [11].
Говоря о токсической концентрации как о своеобразном индикаторе токсичности природно-антропогенных экосистем, нельзя не коснуться и таких важных понятий в экотоксикологии, как вредное вещество или токсикант – загрязнитель, метаболизм, канцерогенез, токсичность как результат избытка необходимых веществ и соединений, биогеохимические свойства токсикантов и их химически активные миграционные формы в окружающей природной среде.


 

 

 

 

 

 


3.2. Токсиканты и их специфические биогеохимические особенности

Понятия «вредное вещество» и «токсикант» – ключевые в экотоксикологии.
Вредное вещество – это инородный нехарактерный для природных экосистем ингредиент, оказывающий отрицательное влияние на них и живые организмы, обитающие в этих экосистемах.
Токсиканты – вещества или соединения, способные оказывать ядовитое действие на живые организмы. В зависимости от характера воздействия и степени проявления токсичности, т. е. способности этих веществ оказывать вредное воздействие на живые организмы, они классифицируются на две большие группы: токсичные и потенциально токсичные. По химической природе вредные вещества, или токсиканты, бывают неорганического происхождения (кадмий, ртуть, свинец, мышьяк, никель, бор, марганец, селен, хром, цинк и др.) и органического (нитразосоединения, фенолы, амины, нефтепродукты, поверхностно-активные вещества, пестициды, формальдегид, бенз(а)пирен и др.). Существует классификация опасности различных химических веществ, попадающих в окружающую среду. В зависимости от степени токсикологического воздействия химические вещества подразделяют на три класса (табл. 3.5).

 

Наиболее приоритетными для химико-токсикологического анализа являются тяжелые металлы (свинец, ртуть, кадмий, медь, никель, кобальт, цинк), обладающие высокой токсичностью и миграционной способностью.
Поведение этих токсикантов в различных природных средах обусловлено специфичностью их основных биогеохимических свойств: комплексообразующей способностью, подвижностью, биохимической активностью, минеральной и органической формами распространения, склонностью к гидролизу, растворимостью, эффективностью накопления [33]. По характеру взаимодействия с различными лигандами тяжелые металлы считаются промежуточными акцепторами между жесткими и мягкими кислотами [23]. В первом случае для них характерны низкие поляризуемость и электроотрицательность, высокая степень окисления и образование ионных связей, во втором – образование преимущественно ковалентных связей.
Определенная аналогия биогеохимических свойств некоторых тяжелых металлов позволила сгруппировать эти элементы и выявить общие закономерности их токсикологического воздействия на окружающую среду (табл. 3.6).

 

Примечания: В– высокая, У – умеренная, Н – низкая.

Так, например, медь и цинк характеризуются как наибольшей химической активностью, позволяющей считать их хорошими индикаторами терригенного стока, седиментации, так и высокой эффективностью накопления в водорослях и планктоне, что определяет их особую значимость для биоты [38]. Они являются главными составляющими многих металлоферментов, участвующих в природной селекции аэробных клеток, в окислительно-восстановительных процессах тканей, иммунной реакции, стабилизации рибосом и мембран клеток [43].
Никель и кобальт – биологически активные и канцерогенные. Сравнительно малая подвижность этих элементов обусловливает их достаточно равномерное распределение в природных средах.
Геохимические особенности свинца – малая подвижность и непродолжительное время жизни в атмосфере и фазе раствора природных вод. В поверхностных водах оно составляет несколько лет, а в глубинных – до 100 лет [7].
По химическим свойствам и специфике поведения в различных природных средах кадмий имеет определенную аналогию с цинком. Высокая токсичность и растворимость этого элемента обусловлены большим сродством к SH-группам [4]. В отличие от ртути сродство кадмия к кислороду выражено менее ярко, что объясняет образование его достаточно неустойчивых металлорганических соединений и определенную инертность в окислительно-восстановительных реакциях. Кадмий склонен к активному биоконцентрированию, что приводит в довольно короткое время к его накоплению в избыточных биодоступных концентрациях. Поэтому кадмий по сравнению с другими тяжелыми металлами является наиболее сильным токсикантом почв (Cd > Ni > Си > Zn) [24].
Ртуть – самый токсичный элемент в природных экосистемах. По токсикологическим свойствам соединения ртути классифицируются на следующие группы: элементная ртуть, неорганические соединения, алкилртутные (метил- и этил-) соединения с короткой цепью и другие ртутьорганические соединения, а также комплексные соединения ртути с гумусовыми кислотами [5]. Из этих соединений ртути наиболее токсичны для человека и биоты ртутьорганические соединения. Их доля в речных водах составляет 46% от общего содержания, в донных отложениях -до 6%, в рыбах – до 80–95%. Как неорганические, так и органические соединения ртути высокорастворимы.
Степень загрязнения окружающей среды токсикантами во многом определяется их химически активными миграционными формами и механизмом миграции.
Миграция элементов – это перенос и перераспределение химических элементов в земной коре и на поверхности Земли.
Сложность биогеохимических процессов, происходящих в атмосферном воздухе, атмосферных осадках, природных водах, донных отложениях, почвах, не позволяет высказать достаточно однозначной точки зрения на соединения тяжелых металлов, определяющих их подвижные формы, и преобладание одной из них в естественных и техногенных процессах. Тем не менее анализ фундаментальных работ позволил сделать следующее заключение: в атмосферном воздухе и атмосферных осадках тяжелые металлы находятся и мигрируют в газообразной и аэрозольной формах, а также в форме органических и неорганических комплексных соединений; в природных водах – в форме свободных ионов, моноядерных гидроксокомплексов, неорганических (сульфатные, хлоридные, карбонатные) и органических (фульватные, гуматные) соединений, взвешенных и коллоидных формах; в донных отложениях – преимущественно во взвешенных формах органического происхождения; в почвах – в водорастворимых ионообменных и непрочно адсорбированных формах.

3.3. Понятие токсичности и канцерогенности элементов и соединений

Показателями негативного воздействия элементов и соединений на живые организмы являются их токсичность и канцерогенность.
Токсичность и канцерогенность – это свойства элементов и соединений, отрицательно влияющие на живые организмы и приводящие к уменьшению продолжительности их жизни.
Количество, при котором химические ингредиенты становятся действительно опасными для окружающей среды, зависит не только от степени загрязнения ими гидросферы или атмосферы, но также от химических особенностей этих ингредиентов и от деталей их биохимического цикла. Для сравнения степени токсикологического воздействия химических ингредиентов на различные организмы пользуются понятием молярной токсичности, на которой основан ряд токсичности, отражающий увеличение молярного количества металла, необходимого для проявления эффекта токсичности при минимальной молярной величине, относящейся к металлу с наибольшей токсичностью [37] (табл. 3.7).

 

Глобальный перенос токсикантов происходит через атмосферу и большие реки, несущие воды в океаны. Земля, ложа рек, океаны служат как бы резервуаром для скопления токсикантов (табл. 3.8). Тот или иной предел, до которого атмосфера привносит токсикант (7) либо в землю, либо на поверхность океана сверх природного циклического уровня, может быть выражен с помощью фактора обогащения EFA:

 
где JT – средний поток (осадки) Е на землю или поверхность океана;
JIT – средний поток (осадки) индексного Т (index toxicant IT) при условии его пренебрежимо малых антропогенных «отложений» в атмосфере. Обычно в качестве IT выбирают алюминий, кремний, титан и железо.

 

Антропогенный перенос токсикантов посредством рек может быть оценен по фактору обогащения EFw:

EFw = (TFW/AlFW)(AlS/TS),

где TFW – средняя концентрация токсиканта в пресной воде;
TS  – средняя концентрация токсиканта на поверхности почвы.

Факторами окружающей среды, влияющими на токсичность, являются температура, растворенный кислород, рН, жесткость и щелочность воды, присутствие хелатообразующих агентов и других загрязнителей в воде [46]. Уменьшение парциального давления кислорода и увеличение рН и жесткости воды приводят к понижению токсикологического воздействия веществ-загрязнителей на окружающую среду и живые организмы, обитающие в ней. Устойчивость живого организма по отношению к токсикантам может быть достигнута при: 1) уменьшении поступления токсиканта; 2) увеличении коэффициента выделения токсиканта; 3) переводе токсиканта в неактивную форму в результате его изоляции или осаждения. Например, синтез металлотионеинов обусловливается несколькими металлами, включая ртуть, кадмий, цинк, медь, серебро. Поэтому наличие одного из этих металлов может вызвать устойчивость к другому металлу из-за неспецифичности лигандов.
Факторы, влияющие на доступность токсикантов, усвоение, их воздействие на организм, могут быть совершенно разной природы:
• химические (химические свойства, окислительно-восстановительные потенциалы, частота воздействия);
• физические (освещенность, температура, турбулентность в растворах);
• биологические (размеры, стадии развития, упитанность, состояние здоровья, акклиматизация).
Канцерогенез – это способность металла проникать в клетку и реагировать с молекулой ДНК, приводя к хромосомным нарушениям клетки. Канцерогенными веществами являются никель, кобальт, хром, мышьяк, бериллий, кадмий. Различие в канцерогенной активности определяется биодоступностью металлопроизводных: наиболее потенциально активные соединения содержат канцерогенные ионы металла, способные легко внедряться в клетки и реагировать с молекулой ДНК [20]. Например, соли шестивалентного хрома СгO42- потенциально более канцерогенны, чем соли трехвалентного хрома СгСl3, поскольку первые легче проникают в клетки, а вторые – лишь ограниченно.
Канцерогенез зависит как от механизма поступления канцерогенных веществ в клетку, так и от их количества внутри клетки. Важным фактором в этом аспекте является общая цитотоксическая активность конкретного иона металла. Так, например, если ион металла также активен и цитотоксичен, как Hg2"1", то гибель клетки будет предшествовать канцерогенному ответу.
Канцерогенные вещества могут быть разделены на три категории: 1) металлсодержащие частицы; 2) водорастворимые соединения металлов; 3) жирорастворимые соединения. Наибольшей проникающей способностью в клетку обладают водорастворимые соединения. Например, такой водорастворимый ион металла, как хромат-ион Сr042-, способен легко проникать в клетки с  использоваением SO42--транспортной системы. А никель в ионной форме не внедряется в клетки с легкостью и поэтому многие водорастворимые соли никеля не рассматриваются как потенциально канцерогенно опасные. Жирорастворимые соединения металлов, такие, например, как карбонил никеля Ni(CO)4, легко входят в клетку и поэтому очень токсичны.
На механизм канцерогенеза сильно влияет рН среды, температура, наличие в клетке аминокислот. При более кислых значениях рН наблюдается наибольшая растворимость канцерогенов в клетках. Присутствие в клетке аминокислот, хорошо связывающих металлы (таких, как цистеин, гистидин), сильно понижает способность канцерогенов, например, никеля, проникать в клетки. Температура среды является ярким индикатором канцерогенеза. Повышение ее приводит к ускорению процесса канцерогенеза.
Локализация канцерогенных ионов металлов в клетках приводит к хромосомным нарушениям, которые являются результатом сшивания молекул ДНК с белком и трансформации клетки. Такие канцерогенные металлы, как никель и хром, образуют очень стабильные тройные комплексы, состоящие из ДНК, металла и белка. Образовавшись, эти комплексы чрезвычайно устойчивы, они вовлекают в канцерогенез никель и хром, и перераспределение ионов металлов по мере образования этих комплексов становится менее вероятным.
Объекты экотоксикологических исследований чрезвычайно разнообразны. Это воды, почвы, фармацевтические препараты, биологические объекты животного происхождения, пищевые продукты и напитки, пестициды, средства бытовой химии, растительность, отходы и т.д. Поэтому комплекс прикладных задач, решаемых экотоксикологией, далеко не прост и весьма специфичен. Наиболее приоритетные из них:
1) создание современной методологии экотоксикологических исследований, позволяющей проводить достоверную оценку качества окружающей среды в условиях природопользования и комплексного влияния основных ее экологических составляющих на живые организмы;
2) осуществление ранней диагностики изменений в организме, выявляемых до наступления морфологических, генетических, популяционных и других изменений;
3) разработка прикладных основ химико-токсикологического анализа приоритетных загрязнителей, включающего разнообразные способы их обнаружения, изолирования и количественного определения в объектах окружающей среды;
4) создание целенаправленного мониторинга токсикантов, вызывающих те или иные отклонения в живых организмах, который позволит по-новому подойти к идентификации наиболее активно действующего фактора, так как специфичность биохимического ответа организма даст возможность проследить путь от следствия к причине, т. е. выйти на соответствующего токсического агента или на узкую группу агентов, выделяя их из общего массива веществ-загрязнителей .
Основная задача химико-токсикологического анализа – установление характера объекта, его консистенции и морфологического состава [45].
Чрезвычайно большое разнообразие объектов химико-токсикологического анализа обусловливает специфические его особенности, заключающиеся в изолировании (или извлечении из достаточно большого количества исследуемого образца ничтожно малых количеств токсиканта) и необходимости анализа в большинстве случаев не индивидуальных веществ, а многокомпонентных смесей, в которых каждый определяемый компонент может влиять на последующий. Стандартная схема выполнения химико-токсикологического анализа (рис. 3.1) включает методы выделения (или изолирования) и очистки токсикантов, а также методы их качественного обнаружения и количественного определения. Среди этих методов особенное внимание, как правило, уделяется методам выделения и очистки, поскольку анализируемые системы представляют собой достаточно сложные неоднородные и многокомпонентные смеси, анализ которых сопряжен с рядом трудностей, обусловленных селективностью определения, достоверностью и воспроизводимостью получаемых аналитических данных.


 

В зависимости от свойств и природы токсикантов для выделения веществ органического происхождения применяют различные способы изолирования: дистилляцией с водяным паром; подкисленным 96°- или 70°-ным этиловым спиртом (алкалоиды, ряд синтетических веществ, гликозиды); подкисленной водой (алкалоиды, синтетические лекарственные препараты и др.); подщелоченной водой (некоторые органические кислоты, фенол и его производные); различными органическими растворителями (остаточные количества пестицидов и др.).
Для изолирования веществ неорганической природы используются минерализация (соединения металлов и мышьяка), диализ (кислоты, щелочи, соли некоторых ядовитых кислот), озоление (фториды, кремнефтористые соединения).
Основными методами, применяемыми для очистки выделенных токсикантов, являются возгонка и перекристаллизация; экстракция и реэкстракция; различные виды хроматографии (газожидкостная, хроматография в тонком слое сорбента). Наиболее широко применяются последние из описанных вследствие дуализма характерных для них аналитических возможностей. Так, они позволяют не только определить и отделить исследуемые соединения от сопутствующих компонентов, но и качественно определить их структуры и количественное содержание. Например, газожидкостная хроматография широко применяется для анализа спиртов (этилового, метилового и др.), ацетальдегида, некоторых галогенопроизводных, а хроматография в тонком слое сорбента – для анализа барбитуратов, алкалоидов, различных лекарственных веществ, гликозидов, элементо-органических соединений.
Основные требования к методам качественного обнаружения – достаточно высокая чувствительность, характеризуемая низким пределом обнаружения, и специфичность. В ряде случаев на практике применяют весьма традиционные аналитические методы (гравиметрические и титриметрические), однако они не распространены широко из-за недостаточной чувствительности (диапазон определяемых содержаний токсикантов 0,1–1 г) при необходимости работы с достаточно большими объемами растворов (до 100 мл). Более чувствительными и экспрессными являются микрохимические методы, например, капельный анализ и микрокристаллоскопический анализ с элементами кристаллооптики, широко применяющиеся для анализа как органических, так и неорганических соединений, позволяющие определять токсиканты в диапазоне концентраций 0,001–0,01 г при анализе очень малых объемов анализируемых систем (от 0,01 до 0,1 мл).
Для обнаружения отдельных токсических соединений (хинина, стрихнина, никоглина, атропина и др.) применяются хроматографические, полярографические, люминесцентные и биологические методы.
Методы количественного определения токсикантов представлены арсеналом различных физических (нейтронно-активационный, рентгенофлуоресцентный, масс-спектрометрический) и физико-химических методов (атомно-абсорбционный анализ, атомно-эмиссионный метод с индуктивно связанной плазмой, хроматографические, электрохимические и спектрофотометрические методы с использованием органических реагентов различных классов). В последнее время активно применяются тест-методы на основе классических цветных реакций, позволяющие определять токсиканты на уровне экспресс-анализа с достаточно высокой точностью и селективностью. Перспективны в экотоксикологии комбинированные аналитические методы, сочетающие эффективные приемы концентрирования с разнообразными способами детектирования и химическими сенсорами.

Контрольные вопросы
1. Что такое экотоксикология?
2. Каковы задачи экотоксикологии?
3. Как определяется пороговый эффект токсикологического воздействия в системах «токсикант– окружающая среда» и «токсикант–живой организм»?
4. Что показывает индекс загрязнения?
5. Что такое ПДК?
6. Что такое фоновая концентрация и токсическая концентрация?
7. Дайте определение канцерогенеза.


РАЗДЕЛ 2 ОХРАНА ОКРУЖАЮЩЕЙ СРЕДЫ

Не обвиняйте природу, она сделала
свое дело, делайте теперь свое.
Д. Мильтон
Глава 4. Защита биосферы от загрязнений
Глава 5. Основы рационального природопользования
Глава 6. Экологический менеджмент
Глава 7. Экологический маркетинг
Глава 8. Экологическое право

Глава 4. Защита биосферы от загрязнений

4.1. Основные виды загрязнений природной среды

Чтобы обеспечить свое существование, человечество должно иметь пищу, воду, кров, одежду и т.д. Все это с неизбежностью предполагает образование различного рода отходов, которые поступают в окружающую среду. Во избежание ненужного, а порой и непоправимого ущерба, наносимого природной среде, такое воздействие на среду должно тщательно планироваться. При этом следует сочетать удовлетворение потребностей человека за счет природы с активной защитой природной среды от последствий человеческой деятельности. Как правило, эти цели не исключают друг друга, хотя в некоторых случаях приходится принимать компромиссные решения. Например, количество отходов, приходящихся на типичный американский город с населением 1 млн человек, является поразительным (рис. 4.1). Ежедневно в городскую канализацию поступает 80% количества воды, которое приходится на одного жителя (0,6 т); образуется 150 т сажи, зольной пыли и других загрязнителей воздуха и 2000 т твердых отходов.
Теоретически в условиях города возможно избежать загрязнения окружающей среды: получать чистую воду из сточных вод, а на иле сточных вод выращивать сельскохозяйственную продукцию. Даже СО2 и Н2О, выделяемые при дыхании, можно было бы превратить с помощью растений и водорослей в углеводы и кислород. Однако согласно законам термодинамики такое изолированное существование веществ не может продолжаться бесконечно долго.
 

Любая деятельность человека оказывает воздействие на суммарные ресурсы Земли. Казалось бы, в результате такой деятельности ресурсы Земли должны иссякнуть. Однако не следует забывать, что Земля постоянно получает приток новой энергии, источником которой является Солнце.
Таким образом, деятельность человека причиняет ущерб окружающей среде независимо от его добрых намерений и задача состоит в том, чтобы сделать последствия этой деятельности наименее пагубными.
Загрязнения окружающей среды (ОС) можно классифицировать (рис. 4.2) на физические (шум, вибрации, различные виды излучений) и химические (различные вещества: в воздухе – это токсичные газы и пары, в воде и почве – ионы тяжелых металлов).

4.2. Защита атмосферы

Характеристика атмосферы и виды загрязнений. Огромное число вредных веществ находится в воздухе, которым мы дышим.
 

Это и твердые частицы, например частицы сажи, асбеста, свинца, и взвешенные жидкие капельки углеводородов и серной кислоты, и газы, такие, как оксид углерода, оксиды азота, диоксид серы. Все эти загрязнения, находящиеся в воздухе, оказывают биологическое воздействие на организм человека: затрудняется дыхание, осложняется и может принять опасный характер течение сердечно-сосудистых заболеваний. Под действием одних содержащихся в воздухе загрязнителей (например, диоксида серы и углерода) подвергаются коррозии различные строительные материалы, в том числе известняк и металлы. Кроме того, может измениться облик местности, поскольку растения также чувствительны к загрязнению воздуха.
Смог (от англ. smoke – дым и fog – туман), нарушающий нормальное состояние воздуха многих городов, возникает в результате реакции между содержащимися в воздухе углеводородами и оксидами азота, находящимися в выхлопных газах автомобилей.
Таблица 4.1 и рис. 4.3 позволят вспомнить нормальный состав и строение атмосферы Земли.
Земная атмосфера подразделяется на слои в соответствии с их температурой. На рис. 4.3 высота слоев указана приблизительно, поскольку она меняется в зависимости от точки отсчета.

 

 

К основным загрязнителям атмосферы, которых, по данным ЮНЕП*, ежегодно выделяется до 25 млрд т, относят:
• диоксид серы и частицы пыли – 200 млн т/год;
• оксиды азота (NxOy)   – 60 млн т/год;
• оксиды углерода (СО и СО2)   – 8000 млн т/год;
• углеводороды (СxНу)    – 80 млн т/год.
* ЮНЕП – Программа ООН по окружающей среде.

Оксид серы IV SO2. При растворении в воде образует кислотные дожди: Н2О + SO2 = H2SO3. Выделяется в атмосферу в основном в результате работы теплоэлектростанций (ТЭС) при сжигании бурого угля и мазута, а так же серосодержащих руд - PbS, ZnS, Cus, NiS, MnS и т.д.
При сжигании угля или нефти содержащаяся в них сера окисляется, при этом образуются два соединения - диоксид серы и триоксид серы. В процессе первоначального горения топлива до триоксида серы окисляется менее 3% серы. Кислотные дожди губят растения, закисляют почву, увеличивают кислотность озер. В Норвегии, например, в 80-е годы из-за кислотных дождей погибло много рыбы, в этом была и большая доля вины российских предприятий (в основном, комбината «Североникель», расположенного на Кольском полуострове). Большую озабоченность вызывает в России огромный трансграничный перенос серы с Запада, составляющий примерно 2 млн. т. оксидов серы – 10 млн. т. сульфатов в год, так как воздушные массы с Запада в нашу страну в связи с розой ветров в 7 – 10 раз превышают наши воздушные массы в Европу. Это в основном страны Восточной Европы и Украина, энергетика которых базируется на бурых углях.
Россия входит в конвенцию по SO2 и участвует во всех процессах, способствующих снижению выбросов окислов серы в атмосферу. В основном это строительство заводов по производству серной кислоты по схеме: диоксид серы – триоксид серы – серная кислота. Используя оксиды серы как вторичное сырье, человечество для производства такого необходимого ему во многих отраслях промышленности продукта, как серная кислота, перестанет извлекать из недр ограниченные запасы серы.
Подсчитано, что в 80-е годы человечеству было необходимо получать около 25 млн. т. серной кислоты в год (например, для получения синтетических моющих средств и других продуктов), а выброс оксидов серы в то же время составил 15,6 млн. т. в год, больше чем необходимо для производства указанного выше количества серной кислоты.
Даже при среднем содержании оксидов серы в воздухе порядка 100 мкг. на кубометр, что нередко имеет место в городах, растения приобретают желтоватый оттенок. Отмечено, что заболевания дыхательных путей, например, бронхиты, учащаются при повышении уровня оксидов серы в воздухе.
Разработано большое число методов для улавливания двуокиси серы из отходящих дымовых газов. Весьма привлекательными оказались скрубберные установки, дающие отходы в виде продуктов, имеющих спрос на рынке: один из таких скрубберов производит серу высокой чистоты, другой – разбавленную серную кислоту. Последнюю невыгодно перевозить на большие расстояния, но высокочистая сера, которая находит применение при производстве лекарственных препаратов, промышленных реагентов, удобрений в развитых странах привлекает и потребителей из-за рубежа.
В России пока удалось решить эту проблему на большей части европейской территории. В азиатской части, где трудно решить вопросы с транспортировкой серной кислоты, например, огромные массы SO2 комбината «Норильский никель», которые выбрасывают высокие (до 100 м) трубы, достигают Канады через Северный полюс. Эта проблема в разных регионах России требует срочного решения. В Москве, например, на единственном нефтеперерабатывающем заводе в Капотне с 1997 г. запрещено использовать серосодержащие нефтепродукты.
Оксиды азота (NxOy). В природе оксиды азота образуются при лесных пожарах. Высокие концентрации оксидов азота в городах и окрестностях промышленных предприятий связаны с деятельностью человека. В значительном количестве оксиды азота выделяют ТЭС и двигатели внутреннего сгорания. Выделяются оксиды азота и при травлении металлов азотной кислотой. Производство взрывчатых веществ и азотной кислоты – еще два источника выбросов оксидов азота в атмосферу.
Загрязняют атмосферу:
• N2O – оксид азота I (веселящий газ), обладает наркотическими свойствами, используется при хирургических операциях;
• NO – оксид азота II, действует на нервную систему человека, вызывает паралич и судороги, связывает гемоглобин крови и вызывает кислородное голодание;
• NO2, N2O4 – оксиды азота V (N2О4= 2NО2), при взаимодействии с водой образуют азотную кислоту 4NO2 + 2Н2О + О2 = 4HNО3. Вызывают поражение дыхательных путей и отек легких.
Оксиды азота принимают участие в образовании фотохимического смога. К фотохимическим процессам относятся процессы образования пероксиацетилнитратов (ПАН). При концентрациях ПАН 0,1–0,5 мг/м3 они могут вызывать раздражение слизистой оболочки глаз и гибель растений, что характерно для южных солнечных городов.
Уровни фотохимического загрязнения воздуха тесно связаны с режимом движения автотранспорта. В период высокой интенсивности движения утром и вечером отмечается пик выбросов в атмосферу оксидов азота и углеводородов. Именно эти соединения, вступая в реакции друг с другом, обусловливают фотохимическое загрязнение воздуха.
Наблюдается большое количество заболеваний верхних дыхательных путей у населения, подвергавшегося воздействию высоких уровней оксидов азота, по сравнению с группой людей, которые находились в условиях меньшей концентрации NхOy, a концентрации других загрязнителей были такими же.
Люди с хроническими заболеваниями дыхательных путей (эмфизема легких, астма), а также страдающие сердечно-сосудистыми заболеваниями, более чувствительны к прямым воздействиям оксидов азота.
Оксид углерода II (СО). Концентрация оксида углерода II в городском воздухе больше, чем любого другого загрязнителя. Однако поскольку этот газ не имеет ни цвета, ни запаха, ни вкуса, наши органы чувств не в состоянии обнаружить его.
Самый крупный источник оксида углерода в городах – автотранспорт. В большинстве городов свыше 90% СО попадает в воздух вследствие неполного сгорания углерода в моторном топливе по реакции: 2С+О3 = 2СО. Полное сгорание дает в качестве конечного продукта диоксид углерода: С + О2 = СО2.
Другой источник оксида углерода – табачный дым, с которым сталкиваются не только курильщики, но и их ближайшее окружение. Доказано, что курильщик поглощает вдвое больше оксида углерода по сравнению с некурящим.
Оксид углерода вдыхается вместе с воздухом или табачным дымом и поступает в кровь, где конкурирует с кислородом за молекулы гемоглобина. Оксид углерода соединяется с молекулами гемоглобина прочнее, чем кислород. Чем больше оксида углерода содержится в воздухе, тем больше гемоглобина связывается с ним и тем меньше кислорода достигает клеток. По этой причине оксид углерода при повышенных концентрациях представляет собой смертельно опасный яд.
Типичный автомобильный двигатель середины 60-х годов выбрасывал с выхлопными газами в среднем 73 г оксида углерода на каждые 1,5 км пробега. К 1981 г. выброс оксида углерода новыми автомобилями достиг уровня всего 3,4 г на 1,5 км (данные США).
Для достижения установленного стандарта выхлопные газы смешиваются с воздухом в присутствии катализатора. Дальнейшее окисление оставшегося оксида углерода происходит в каталитическом преобразователе (Pt/Pd – платина-палладий). Именно такая система в настоящее время повсеместно выбрана для уменьшения выбросов СО в атмосферу. В Москве, например, по решению мэрии не оформляют покупку автомобилей иностранных марок до 1985 г. выпуска, т. е. без установленных каталитических дожигателей на выхлопные газы. В США годовые выбросы оксида углерода постепенно уменьшались начиная с 1976 г., по мере того как новые модели автомобилей с каталитическими преобразователями выхлопных газов сменяли старые, менее эффективные модели; общий выброс СО автотранспортом США сократился с 64,3 млн т в 1976 г. до 47,7 млн т в 1983 г., т.е. на 25%. Одна из причин столь небольшого снижения связана с общей длиной пробега автомобилей, которая ежегодно возрастает из-за постоянного роста числа автомобилей на дорогах и улицах. Эффективность каталитических преобразователей со временем уменьшается и необходимо регулярно осуществлять повторные проверки выхлопных газов автомобилей на содержание СО. Борьба за качество воздуха во всех странах продолжается, поскольку пробег автомобилей непрерывно растет. Этот неограниченный рост можно было бы сократить за счет создания новых систем общественного транспорта, привлекательных для населения и способных широко развиваться, или перехода на электромобили.
Оксид углерода IV (СО2). Влияние углекислого газа (СО2) связано с его способностью поглощать инфракрасное излучение (ИК) в диапазоне длин волн от 700 до 1400 нм. Земля, как известно, получает практически всю свою энергию от Солнца в лучах видимого участка спектра (от 400 до 700 нм), а отражает в виде длинноволнового ИК-излучения.
С 1850 г. содержание СО2 в атмосфере возросло с 0,027 до 0,033% в связи с техногенной деятельностью. Человечество сожгло в XX в. ископаемых видов топлива столько, сколько за весь период своего существования до XX в. Поглощая ИК-излучение, СО2 действует как парниковая пленка.
Подсчитано, что если к 2000 г. среднегодовая температура возрастет на 1°С, то в результате таяния ледников уровень Мирового океана поднимется на 1,5 м. К счастью, накопление углекислого газа в атмосфере идет в 2–3 раза медленнее, чем это подсчитано теоретически.
Механизмом вывода углекислого газа из атмосферы является поглощение его в результате фотосинтеза растений, а также связывание его в океанских водах по реакции: СО2+Н2О+Са2+ = =СаСО3+2Н+.
Пыль. Причины основных выбросов пыли в атмосферу – это пыльные бури, эрозия почв, вулканы, морские брызги. Около 15– 20% общего количества пыли и аэрозолей в атмосфере – дело рук человека: производство стройматериалов, дробление пород в горнодобывающей промышленности, производство цемента, строительство. Например, во Франции приблизительно 3% общего объема производимого цемента выбрасывается в атмосферу (около 100 т в год). Пыль, осевшая в индустриальных городах, содержит 20% оксидов железа (Fе2О3), 15% оксида кремния (SiO2) и 5% сажи (С). Промышленная пыль часто включает также оксиды различных металлов и неметаллов, многие из которых токсичны (оксиды марганца, свинца, молибдена, ванадия, сурьмы, теллура).
Американский эколог О. Бартон так охарактеризовал проблему, связанную с запыленностью атмосферы: «Одно из двух: либо люди сделают так, что в воздухе станет меньше дыма, либо дым сделает так, что на Земле станет меньше людей».
Пыль и аэрозоли не только затрудняют дыхание, но и приводят к климатическим изменениям, поскольку отражают солнечное излучение и затрудняют отвод тепла от Земли. Например, так называемые смоги в очень населенных южных городах (Мехико – 22 млн жителей и др.) снижают прозрачность атмосферы в 2–5 раз.
Кислород (О2). Кислород на Земле создан самой жизнью. Рис. 4.4 иллюстрирует историю происхождения кислорода на планете Земля. Примерно 2 млрд лет назад содержание свободного кислорода в земной атмосфере начало возрастать. После того как из части атмосферного кислорода сформировался защитный озоновый слой, начали развиваться наземные растения и животные. С течением времени содержание кислорода в атмосфере значительно менялось, поскольку менялись уровни его образования и использования [30].
 

Главным продуцентом кислорода на Земле служат зеленые водоросли поверхности океана (60%) и тропические леса суши (30%). Тропические леса Амазонки называют легкими планеты Земля. Ранее в литературе высказывались опасения, что возможно уменьшение количества кислорода на Земле вследствие увеличения объема сжигаемого ископаемого топлива. Но расчеты показывают, что использование всех доступных человеку залежей угля, нефти и природного газа уменьшит содержание кислорода в воздухе не более чем на 0,15% (с 20,95 до 20,80%). Другая проблема – вырубка лесов, приводящая к возникновению кислородных «паразитов» – стран, которые живут за счет чужого кислорода. Например, США за счет своих растений имеет только 45% кислорода, Швейцария – 25%.
Озон (О3). Озон образуется в верхних слоях стратосферы и в нижних слоях мезосферы в результате протекания следующих реакций:
О2 + hv (=240 нм) = О + О,
O2 + О + М,
где М – различные составляющие атмосферы, например, кислород или азот.
Озон и атомарный кислород могут реагировать в кислородной атмосфере согласно реакциям:
O3 + hv (380 нм) = О2 + О,
О3 + О = 2O2,
О + О + М = O2+М.
Эти реакции образуют так называемый цикл Чепмена. Общее содержание озона иногда выражают как число молекул, получаемое в результате суммирования по всем широтам, долготам и высотам. На сегодняшний день это количество приблизительно равно 4•1037 молекул озона. Наиболее распространенной количественной оценкой состояния озона в атмосфере является толщина озонного слоя Х – это толщина слоя озона, приведенного к нормальным условиям, которая в зависимости от сезона, широты и долготы колеблется от 2,5 до 5 относительных мм. Области с уменьшенным содержанием на 40–50% озона в атмосфере называют «озоновыми дырами».
Около 90% озона находится в стратосфере. Долгое время считалось, что основной причиной истощения озонного слоя являются полеты космических кораблей и сверхзвуковых самолетов, а также извержения вулканов и другие природные явления.
Разрушительное действие хлорфторуглеродных соединений (ХФУ) на стратосферный озон было открыто в 1974 г. американскими учеными – специалистами в области химии атмосферы Ш. Роулендом и М. Молина (в 1996 г. за открытия в этой области им присуждена Нобелевская премия). С тех пор не раз предпринимались попытки ограничить выброс ХФУ в атмосферу, и тем не менее сейчас во всем мире ежегодно производится около миллиона тонн газообразных веществ, способных разрушить озонный слой.
ХФУ, часто встречающиеся в быту и в промышленном производстве, – это пропелленты в аэрозольных упаковках, хладоагенты (фреоны) в холодильниках и кондиционерах. Они применяются и при производстве вспененного полиуретана, и при чистке электронной техники.
Постепенно ХФУ поднимаются в верхний слой атмосферы и разрушают озонный слой – щит атмосферы, спасающий от УФ-излучения. Время жизни двух самых опасных фреонов – Ф-11 и Ф-12 – от 70 до 100 лет. Этого вполне достаточно, чтобы в ближайшее время ощутить на себе последствия сегодняшней экологической неграмотности. Если, сохранятся современные темпы выброса ХФУ в атмосферу, то в ближайшие 70 лет количество стратосферного озона уменьшится на 90%. При этом весьма вероятно, что:
• рак кожи примет эпидемический характер;
• резко сократится количество планктона в океане;
• исчезнут многие виды животных, например, ракообразные;
• УФ-излучение неблагоприятно скажется на сельскохозяйственных культурах.
Все это нарушает равновесие во многих экосистемах Земли, из-за фотохимического смога ухудшится общее состояние атмосферы, усилится «парниковый эффект».
ХФУ – высокостабильные соединения и поскольку они не поглощают солнечное излучение с большой длиной волны, они не могут подвергнуться его воздействию в нижних слоях атмосферы, но, преодолев защитный слой, поднимаются вверх по атмосфере и коротковолновое излучение высвобождает из них атомы свободного хлора. Свободные атомы хлора затем вступают в реакцию с озоном:
Сl + О3 = СlO + O2,
СlO + О = Сl + O2.
Таким образом, разложение ХФУ солнечным излучением создает каталитическую цепную реакцию, согласно которой один атом хлора способен разрушить до 100 000 молекул озона. Канцерогенным является УФ-излучение с длиной волны короче 320 нм. Ожидается, что каждый процент сокращения озонного слоя повлечет за собой увеличение числа случаев заболевания раком кожи на 5–6%.
Основные санитарные требования к качеству атмосферного воздуха. Основным критерием контроля качества атмосферного воздуха является ПДК токсичных веществ. При санитарной оценке качества атмосферного воздуха принято выражать содержание загрязняющих веществ в мг на м3 воздуха. Это выражение концентрации применимо для любого агрегатного состояния примесей. За рубежом, например в США, часто пользуются другой концентрацией:

 
 

где  М – молекулярная масса загрязнителя;
      22,4 – объем в литрах 1 моля газа при 25°С и 760 мм рт. ст.
Критерием оценки влияния выбросов предприятий на окружающую среду является уровень практических концентраций примесей в атмосфере, полученных в результате рассеивания выбросов, по сравнению с предельно допустимыми.
Для атмосферного воздуха установлены соответствующие значения ПДК.
Концентрация вредных веществ в воздухе производственных помещений не должна превышать ПДКр.з., в воздухе для вентиляции производственных помещений – 0,3 ПДКр.з.; в атмосферном воздухе населенных пунктов – ПДК м.р.; в зоне отдыха и курортов - 0,8 ПДК м.р..
Нормы ПДК служат исходной базой для проектирования и экспертизы новых машин и механизмов, технологических линий, промышленных сооружений и предприятий, а также для расчета вентиляционных, газопылеулавливающих и кондиционирующих систем, контролирующих приборов и систем сигнализации.
Основные организации, контролирующие выбросы предприятий в атмосферный воздух, – санитарно-эпидемиологические станции (СЭС); территориальные управления Федеральной службы России по гидрометеорологии и мониторингу окружающей среды; Государственная инспекция по контролю за работой газоочистных и пылеулавливающих установок.
Для предотвращения загрязнения атмосферы введены нормативы на выбросы вредных веществ непосредственно из каждого источника (труба, шахта и т.д.). Государственным стандартом (1990 г.) установлены величины предельно допустимых выбросов (ПДВ) вредных веществ в атмосферу:
ПДВ – количество вредных веществ, выбрасываемых в единицу времени (г/с), которое в сумме с выбросами из других источников загрязнения не создает приземной концентрации примеси, превышающей значение ПДК. Это научно-технический норматив для конкретного источника загрязнения, обязательный для данного предприятия.
Если в воздухе населенных мест концентрация превышает ПДК, а величина ПДВ по объективным причинам не может быть достигнута, то фактический выброс называется временно согласованным выбросом (ВСВ).
Нормативные выбросы вредных веществ устанавливают для каждого источника загрязнения в г/с и для всего предприятия в целом (т/год). При установлении ПДВ или ВСВ необходимо учитывать фоновые концентрации, значения которых определяются для предприятия территориальными организациями Федеральной службы России по гидрометеорологии и мониторингу окружающей среды. Для городов с населением меньше 250 тыс. человек приняты следующие нормы фоновых концентраций основных токсикантов:
SО 2 – 0,1 мг/м3 СО – 1,5 мг/м
NО2 – 0,03 мг/м3 пыль – 0,2 мг/м3
Методика для расчета ПДВ основана на применении модели, которая учитывает индивидуальные свойства загрязнителя (ПДКм.р.); фоновую концентрацию Сф; геометрические размеры источника загрязнения (h – высота, м; D – диаметр устья, м); условия выхода газового потока из источника (Т – разность температур выбрасываемой смеси и окружающего воздуха, V – средняя скорость выхода смеси из устья источника, м/с); W, f – условия вертикального и горизонтального рассеивания вредного вещества в атмосферном воздухе; А, – показатель относительной агрессивности; F – коэффициент, учитывающий скорость оседания вредных веществ в воздухе; п – коэффициент, учитывающий рельеф местности.
Физико-химические методы очистки атмосферы от газообразных загрязнителей. Основное направление защиты воздушного бассейна от загрязнений вредными веществами – создание новой безотходной технологии с замкнутыми циклами производства и комплексным использованием сырья.
Многие действующие предприятия используют технологические процессы с открытыми циклами производства. В этом случае отходящие газы перед выбросом в атмосферу подвергаются очистке с помощью скрубберов, фильтров и т.д. Это дорогая технология, и только в редких случаях стоимость извлекаемых из отходящих газов веществ может покрыть расходы на строительство и эксплуатацию очистных сооружений.
Наиболее распространены при очистке газов адсорбционные, абсорбционные и каталитические методы.
Санитарная очистка промышленных газов включает в себя очистку от СО2, СО, оксидов азота, 8O2, от взвешенных частиц.
• Очистка газов от СО2.
а) Абсорбция водой. Простой и дешевый способ, однако эффективность очистки мала, так как максимальная поглотительная способность воды – 8 кг СО2 на 100 кг воды.
б) Поглощение растворами этанол-аминов по реакции:
2R – NH2 + СО2 + Н2О → (R – NH3)2СО3.
В качестве поглотителя обычно применяется моноэтаноламин.
в) Холодный метанол СН3ОН является хорошим поглотителем СО2 при -35°С.
г) Очистка цеолитами типа СаА. Молекулы СО2 очень малы (d = 3,1  ). Для извлечения СO2 из природного газа и удаления продуктов жизнедеятельности (влаги и СО2) в современных экологически изолированных системах (космические корабли, подводные лодки и т.д.) используются молекулярные сита типа СаО.
• Очистка газов от СО.
а) Дожигание на Pt/Pd (платино-палладиевом) катализаторе:
2СО + О2 → 2СО2.
б) Конверсия (адсорбционный метод):
СО + Н2О → СО2 + H2.
• Очистка газов от оксидов азота.
В химической промышленности очистка от оксидов азота на 80% и более осуществляется в основном в результате превращений на катализаторах.
а) Окислительные методы основаны на реакции окисления оксидов азота с последующим поглощением водой и образованием НNО3:
окисление озоном в жидкой фазе по реакции:
2NO + О3 + Н2О → 2 НNО3;
окисление кислородом при высокой температуре:
2NO + О2 → 2NО2.
б) Восстановительные каталитические методы основаны на восстановлении оксидов азота до нейтральных продуктов в присутствии катализаторов или под действием высоких температур в присутствии восстановителей. Процесс восстановления можно представить в виде следующей схемы:
N2О5  →  N2О4  →  NО2  →  NO                     N2 +О2.
-11°C        21,5°C      140°C      600°C   10 000°С
Разложение оксидов азота до нейтральных соединений (2NO → N2 + О2) происходит в потоке низкотемпературной плазмы (10 000°С). Этот процесс при более низких температурах в присутствии катализатора протекает в двигателях внутреннего сгорания. Присутствие восстановителей в зоне реакции (угля, графита, кокса) также понижает температуру реакции восстановления. При температуре 1000°С степень разложения N0 в реакции С + 2NO → СО2 + N2 составляет 100%.
При температуре выхлопных газов автомобиля в двигателе внутреннего сгорания возможна реакция:
2NO + 2СО → N2 + 2СО2.
в) Сорбционные методы.
Это адсорбция оксидов азота водными растворами щелочей и известью СаСО3 и адсорбция оксидов азота твердыми сорбентами (угли, торф, силикагели, цеолиты).
• Очистка газов от SO2.
ТЭС мощностью 1 млн кВт при работе на каменном угле выбрасывает в атмосферу 11 тыс. т SO2, на газе – 20% этого количества.
Очистка дымовых газов электростанций обходится сейчас приблизительно в 300–400 тыс. руб. за 1 кВт в год. Снижение доли серы в нефтепродуктах на 0,5% обходится при этом в 30 тыс. руб. на 1 т. Методы улавливания SO2 требуют больших затрат, их можно разделить на аммиачные, нейтрализации и каталитические.
Эффективность очистки зависит от множества факторов: парциальных давлений SO2 и O2 в очищаемой газовой смеси; температуры отходящих газов; наличия и свойств твердых и газообразных компонентов; объема очищаемых газов; наличия и доступности хемосорбентов; потребности в продуктах утилизации SO2; требуемой степени очистки газа.
• Очистка газов от взвешенных частиц, например, пыли.
Можно выделить несколько методов улавливания частиц пыли:
гравитационное оседание;
центрифугирование;
электростатическое оседание;
инерционное соударение;
прямой захват;
диффузия.
Все процессы очистки осуществляются с помощью специальных фильтров, скрубберов и т.д.

4.3. Защита гидросферы

Характеристика гидроресурсов и сточных вод. Гидросферой называют водную оболочку Земли. Это совокупность океанов, морей, озер, прудов, болот и подземных вод. Гидросфера – самая тонкая оболочка нашей планеты, она составляет лишь 10-3% общей массы планеты.
Роль воды во всех жизненных процессах общепризнана. Без воды человек может жить не более 8 суток, за год он потребляет около 1 т воды. Растения содержат 90% воды. Сельское хозяйство является основным потребителем пресной воды. Вода идет на мелиорацию, обслуживание животноводческих комплексов. Так, необходимо воды для выращивания
1 т пшеницы – 1500 т
1 т риса  – 7000 т
1 т хлопка  – 10 000 т
Вода необходима практически всем отраслям промышленности. Так, требуется воды на производство
1 т чугуна  –50–150т
1 т пластмасс – 500–1000 т
1 т цемента – 4500 т
1 т бумаги   – 100 000 т
На электростанциях мощностью 300 тыс. кВт расход воды составляет 300 млн т/год.
Указанные производства требуют только пресную воду. Расчеты показывают, что количество пресной воды составляет всего 2,5% всей воды на планете; 85% – морская вода, содержащая до 35 г/л солей. Запасы пресной воды распределены крайне неравномерно: 72,2% – льды; 22,4% – грунтовые воды; 0,35% – атмосфера; 5,05% – устойчивый сток рек и вода озер. На долю воды, которую мы можем использовать, приходится всего 10-2%  всей пресной воды на Земле.
Хозяйственная деятельность человека привела к заметному сокращению количества воды в водоемах суши: мелеют водоемы, исчезают малые реки, высыхают колодцы, снижается уровень грунтовых вод. Сокращение уровня грунтовых вод уменьшает урожайность окрестных хозяйств.
Проблема Каспия – хищническое истребление ценнейших пород осетровых рыб при том, что разведение молоди осетровых, т. е. восстановление их популяции, ведется только рыбохозяйствами России и в небольшом объеме – Азербайджаном, а остальные страны только потребляют.
Проблема Азовского моря – увеличение концентрации солей. За послевоенные годы его засоленность увеличилась с 9 до 15,6 ррт. Организмы, питающие рыбу, погибают. Результат – снижение возможности рыболовства на Азовском море.
Проблема Байкала – воду этого ценнейшего озера используют для получения целлюлозы по финской технологии, т. е. используют воду минимальной минерализации, содержащую меньше 100 мг/л солей. Обычно в пресной воде содержание солей составляет 300–450 мг/л, в питьевой – 380 мг/л. Байкал после строительства целлюлозно-бумажного комбината в городе Байкальске стал загрязняться (60-е годы). В озере Байкал находится несколько сот эндаминореликтов – редких видов биоты, которых нет в других водоемах. С запозданием разработаны уникальные очистные сооружения, стоимость которых составила 30% стоимости основных фондов производства. Однако принимаемые меры недостаточны для защиты Байкала.
По количеству солей вода делится на: пресную (< 1 г/л солей), засоленную (до 25 г/л солей) и соленую (> 25). В океане, например, – 35 г/л; Балтийском море – 8–16 г/л; Каспийском – 11–13 г/л; Черном – 17–22 г/л.
Деградация природных вод связана в первую очередь с увеличением солесодержания. Количество минеральных солей в водах постоянно растет, даже в такой большой водной системе, как бассейн реки Волги с ее притоками Камой и Окой. В ряде небольших рек, например, в Северном Донце, вода уже не пресная, а соленая. Средняя минерализация рек Украины составляет 2–3 г/л. В настоящее время многие реки Урала не могут быть использованы как источники водоснабжения. Так, в Каму поступают промышленные стоки с минерализацией 1,5–5,0 г/л.
Основная причина засоленности вод – истребление лесов, распашка степей, выпас скота. Вода при этом не задерживается в почве, не увлажняет ее, не пополняет почвенные источники, а скатывается через реки в море. В качестве мер, принятых в последнее время для снижения засоленности рек, используется посадка лесов, предпринимаемая, например, в Саратовской области.
Громаден объем сброса дренажных вод. К 2000 г. он составит 25–35 км3. Системы орошения потребляют обычно 1–2 тыс. м3/га, их минерализация составляет до 20 г/л. Огромен вклад в минерализацию воды сброса промышленных стоков. По данным за 1996 г. в России объем промстоков был равен стоку такой большой реки, как Кубань.
Наблюдается постоянный рост водопотребления как на производственные, так и на бытовые нужды. В среднем в городах с населением 1 млн человек, по данным США, потребляется 200 л/сутки воды на человека, по другим городам, л/с. (литр/сутки):
Москва  – 400  Лондон – 170
С.-Петербург – 500  Париж  – 130
Берлин  – 250  Брюссель –   85
Водоемы (в частности, пруды) представляют собой сложную экологическую систему, которая создавалась в течение длительного времени. В них непрерывно протекает процесс изменения состава примесей, приближающийся к состоянию равновесия. Значительные отклонения от состояния равновесия могут привести к гибели популяций водных организмов, т. е. к невозможности возврата к состоянию равновесия, а это приводит к гибели экосистемы. Процессы, связанные с возвращением экосистемы к первоначальному состоянию, называются процессами самоочищения. К важнейшим из них относятся:
• осаждение грубодисперсных и коагуляция коллоидных примесей;
• окисление (минерализация) органических примесей;
• окисление минеральных примесей кислородом;
• нейтрализация кислот и оснований за счет буферной емкости воды водоема;
• гидролиз солей тяжелых металлов, приводящий к образованию малорастворимых гидроксидов и выделению их из раствора и др.
Основные характеристики сточных вод, влияющие на состояние водоемов: температура, минералогический состав примесей, содержание кислорода, мл, рН (водородный показатель), концентрация вредных примесей. Особенно большое значение для самоочищения водоемов имеет кислородный режим. Условия спуска сточных вод в водоемы регламентируются «Правилами охраны поверхностных вод от загрязнения сточными водами». Сточные воды характеризуются следующими признаками:
• мутность воды – определяется с помощью мутномера: исследуемую воду сравнивают с эталонным раствором, который приготовлен из каолина (или из инфузорной земли) на дистиллированной воде, выражается в мг/л;
• цветность воды – определяется сравнением интенсивности окраски испытуемой воды со стандартной шкалой. Выражается в градусах цветности. В качестве стандартного раствора применяют раствор солей кобальта;
• сухой остаток – масса солей и веществ, которые остаются после выпаривания воды (мг/л);
• кислотность – измеряется в единицах рН. Природная вода обычно имеет щелочную реакцию (рН > 7);
• жесткость – зависит от содержания солей Са2+ и Mg2+. Различают три вида жесткости воды: общая, обусловленная содержанием солей кальция и магния независимо от содержания анионов; постоянная, обусловленная содержанием ионов С1- и SO после кипячения в течение 1 ч (она не удаляется); устранимая (временная) – устраняется кипячением: Са (НСО3) 2 → СаСО3 + СО2 + Н2О. Жесткость измеряется в мг-экв/л солей магния и кальция (1 мг-экв соответствует 28 мг СаО) и в градусах (1° – количество солей кальция и магния, соответствующее 10 мг СаО в 1 л воды). 1° жесткости = 10 мг-экв = 2,8° жесткости;
• растворимый кислород – зависит от температуры воды и барометрического давления, измеряется в мг/л;
• биологическая потребность в кислороде (БПК) – количество кислорода, поглощаемое микроорганизмами в сточных водах. За критерий оценки БПК принята величина уменьшения количества растворенного кислорода в воде в течение 5 или 20 суток при температуре 20°С.
В зависимости от условий образования сточные воды делятся на три группы:
• бытовые сточные воды – стоки душевых, прачечных, бань, столовых, туалетов, от мытья полов и т.д. Их количество в среднем составляет 0,5–2 л/с. с 1 га жилой застройки города, они содержат примерно 58% органических и 42% минеральных веществ;
• атмосферные сточные воды, или ливневые, их сток неравномерен: 1 раз в год – 100–150 л/с. с 1 га; 1 раз в 10 лет – 200–300 л/с. с 1 га. Особенно опасны ливневые стоки на промышленных предприятиях. Из-за их неравномерности затруднены сбор и очистка этих стоков;
• промышленные сточные воды – жидкие отходы, которые возникают при добыче и переработке сырья. Расход воды при этом исчисляют из удельного водопотребления на единицу продукции.
Самым важным условием, необходимым для того, чтобы биохимические процессы в водоеме протекали правильно и обеспечивали самоочищение воды, является наличие в ней растворенного кислорода. Если кислорода недостаточно, то высшие организмы погибают. Органические соединения вместо окисления подвергаются анаэробному разложению с выделением сероводорода, углекислого газа, метана и водорода, создающих вторичные загрязнения водоема.
По санитарным нормам (СНИП) значение БПК в зависимости от типа природных водоемов не должно превышать 3–6 мг О2/лН2О. В сточных водах БПК составляет от 200 до 3000 мг/л, поэтому при сбросе в водоемы промстоков необходимо их чистить или сильно разбавлять.
Главным критерием качества воды и атмосферы в нашей стране являются ПДК. Но они установлены далеко не для всех веществ. Спуск в водоемы новых веществ, ПДК которых не определены, в нашей стране запрещен. Кроме того, часто используют значения ПДК не для сточных вод, а для водоема. Таким образом, появляется возможность достичь установленного ПДК простым разбавлением сточных вод, чем часто пользуются. Около половины сточных вод на Земле не подвергается специальной очистке перед сбросом в водоемы. Их обезвреживание заключается лишь в разбавлении чистой водой и самоочищении водоемов. Например, сточные воды заводов по производству полиэтилена и полистирола надо разбавлять в 30 раз; сточные воды от производства синтетического каучука – в 185 раз.
В России ежегодно образуется около 21 км3 сточных вод, из них 16 км3 сливаются в Волгу или ее притоки. Выбросы Си, Zn, Сг превышают ПДК. Поэтому принято специальное постановление по защите окружающей среды в бассейнах Волги и Урала.
Сбросы сточных вод регламентируются также величиной ПДС (предельно-допустимого сброса) предприятия. В 90-х годах в мире использовали 2000–3000 км3 пресных вод, т. е. примерно 30% устойчивого мирового стока рек. Чтобы не погибнуть, чистить воду придется всем странам. Кроме того, пресная вода, удобная для использования, распределена крайне неравномерно. В Европе и Азии, где проживает 70% населения Земли, мировых запасов речных вод очень мало. Гидроресурсы нашей страны велики, однако более 80% речного стока приходится на малонаселенные районы Севера и Востока. На Европейской части России проживает около 80% населения и на них приходится всего 20% гидроресурсов.
Таким образом, влияние хозяйственной деятельности человека на кругооборот воды в природе привело к:
• сокращению количества воды в водоемах суши;
• росту водопотребления;
• исчерпанию самоочищающей способности водоемов;
• деградации природных вод.
Выход из положения – создание замкнутых водооборотных систем. Помимо перечисленных выше факторов это связано с экономическими соображениями. Стоимость очистки сточных вод даже после значительного разбавления очень велика. Так, если принять стоимость 90% очистки за 1 условную единицу (у. е.), то очистка на 99% дороже в 10 раз (10 у. е.), а очистка на 99,9%, которая требуется чаще всего, будет дороже уже в 100 раз, т. е. составит 100 у. е. В результате локальная очистка сточных вод только от характерных для данного вида стоков загрязнений для их повторного использования в том же производстве оказывается существенно дешевле их полной очистки в соответствии с требованиями санитарных органов.
Для характеристики замкнутых водооборотных систем используется критерий кратности использования воды в обороте:

 

те    – общий объем воды, потребляемый предприятием (м3/ч; м3/г сырья или продукции);
Q3 – забор потребления свежей воды.
Чем больше кратность использования, Тем совершеннее схема водоснабжения. В США в 1995 г. среднее значение кратности равнялось 7,5. В России в 1995 г. критерий кратности использования воды по отраслям составлял:
Нефтехимия   – 7,00
Черная и цветная металлургия – 5,25
Пищевая промышленность – 3,00
Теплоэнергетика   – 2,25
Производство стройматериалов – 1,60
Легкая промышленность  – 1,30
В нашей стране планировалось довести этот показатель в ближайшие годы до 7,00 в среднем по предприятиям, а в США – до 27.
Создание экономически радикальных замкнутых систем водного хозяйства – весьма трудная задача. Сложный химический состав сточных вод, разнообразие содержащихся в них соединений делают невозможной разработку универсальной бессточной технологической схемы. Можно говорить лишь об общих принципах создания и проектирования бессточных схем.
Основные положения создания водооборотных систем:
1. Разработка научно обоснованных требований к качеству воды, используемой во всех технологических процессах и операциях. В подавляющем большинстве случаев нет необходимости в использовании воды питьевого качества.
2. Максимальное внедрение систем воздушного охлаждения вместо водного. Здесь большую роль сыграло бы внедрение агрегатов большой единичной мощности. При этом высокоэнергетическое тепло используется для технологических целей, а низкоэнергетическое – для обогрева. Так, например, в результате внедрения установок воздушного охлаждения на предприятиях нефтепереработки потребление воды в среднем сократилось на 110–160 млн м3/год (Омский нефтеперерабатывающий завод и др.).
3. Размещение на промышленных площадях комплекса производств (так называемых территориально-производственных комплексов – ТПК) должно обеспечить возможность многократного (каскадного) использования воды в технологических процессах и операциях.
4. Последовательное многократное использование воды в технологических операциях должно по возможности обеспечить получение небольшого объема максимально загрязненных сточных вод.
5. Использование воды для очистки газов от водорастворимых соединений целесообразно только тогда, когда из газов извлекают, а затем утилизируют ценные компоненты.
6. Применение воды для очистки газов от твердых частиц допустимо только в замкнутом цикле.
Методы очистки воды. Чистые сточные воды – это воды, которые в процессе участия в технологии производства практически не загрязняются и сброс которых без очистки не вызывает нарушений нормативов качества воды водного объекта. Нормативы едины и утверждены Правилами охраны вод от загрязнения сточными водами, принятыми Минводхозом, Минздравом и Минрыбхозом в 1974 г. В 1996 г. на базе Роскомвода и Роскомнедр было создано Министерство природных ресурсов РФ. Принят ряд новых законов Российской Федерации, которые значительно меняют сложившуюся нормативно-правовую базу и систему управления и контроля в области охраны окружающей среды и рационального использования природных ресурсов.
Загрязненные сточные воды – это воды, которые в процессе использования загрязняются различными компонентами и сбрасываются без очистки, а также сточные воды, проходящие очистку, степень которой ниже норм, установленных местными органами Государственного комитета РФ по охране окружающей среды. Сброс этих вод вызывает нарушение нормативов качества воды в водном объекте.
Практически всегда очистка промышленных стоков – это комплекс методов. Наиболее широко используется комбинация механической очистки, нейтрализации промышленных стоков, или реагентной очистки, и биохимической очистки. Эти операции осуществляются практически во всех комплексах очистных сооружений, в том числе и на станциях аэрации при очистке бытовых (канализационных) стоков. Рассмотрим их подробнее.
1. Механическая очистка стоков
Сюда относятся отстой сточных вод в специальных отстойниках, в которых происходит оседание взвешенных частиц на дно отстойников; сбор нефтепродуктов и других нерастворимых в воде жидкостей с поверхности стоков устройствами типа механических рук и, наконец, фильтрация вод через слой песка примерно 1,5-метровой толщины.
2. Химическая, или реагентная, очистка
а) Один из видов обработки сточных вод – реакции нейтрализации. Нейтрализация – химическая реакция, ведущая к уничтожению кислотных свойств раствора с помощью щелочей, а щелочных свойств раствора – с помощью кислот. Поскольку химическая природа отходов может быть различной, то для нейтрализации одного вида отходов необходимо уменьшить кислотные свойства, а для другого вида отходов – щелочные свойства. О степени кислотности или щелочности раствора судят по величине водородного показателя рН. Значение величины рН растворов различных веществ колеблется от 0 до 14. Небольшие значения рН свидетельствуют о наличии кислотной среды.
Чтобы контролировать реакцию нейтрализации, надо знать, какое количество кислоты или щелочи надо добавить в раствор для получения необходимого значения рН. Для этого используют метод титрования, по объему израсходованного титранта вычисляя количество определяемого вещества.
Самую простую систему очистки на основе реакции нейтрализации можно представить в виде измельченного известняка, на который вылили раствор кислоты, а осадок собрали в отстойник.
б) Реакции окисления-восстановления. Любая реакция окисления-восстановления есть одновременное окисление одних компонентов и восстановление других. Наиболее распространенные окислители и восстановители:

Окислители   Восстановители
Кислород или воздух  Хлорит
Озон    Сульфат Fe2+
Хлор, гипохлорит   Гидросульфит
Перекись водорода  Диоксид серы
Перманганат калия  Сероводород

Одним из важнейших окисляющих агентов является хлор, поэтому большинство химических операций со сточными водами начинается с хлорирования, чтобы высокотоксичный хлор к концу реагентной обработки полностью удалялся из воды. Окислительно-восстановительные реакции используются для превращения токсичных веществ в безвредные.
3. Биохимическая очистка
а) Аэробная биохимическая очистка – минерализация органического вещества промышленных или бытовых стоков, происходящая в результате его окисления при содействии аэробных микроорганизмов (минерализаторов) в процессе использования ими этого вещества в качестве источника питания в условиях интенсивного потребления микроорганизмами растворенного в воде кислорода:
С6Н12О6 + 6O2 = 6СО2 + 6H2O.
Было установлено, что органические вещества омертвевших организмов разрушаются под действием бактерий, если для последних созданы соответствующие условия, т. е. своевременно подается кислород и среда-носитель оказывается благоприятной для развития микроорганизмов. В качестве среды-носителя был выбран песчаный слой толщиной 1,5 м. Доступ кислорода обеспечивается с помощью вентиляции или путем естественной тяги. Сточные воды сливаются на грунт только в течение 6 часов, а остальные 18 часов отводятся на биохимические процессы. Культура микробов развивается в верхних слоях песка.
Этот метод очистки, названный методом капельной фильтрации, впервые использован в прошлом веке (1866 г.) в Лондоне. Метод позволяет при использовании 1 га песчаной почвы очистить 1,038•106л/с. сточных вод, следовательно, Лондону в 1866г. для очистки 1,57•109л/с. сточных вод необходимо было иметь 810 га подходящих земель. Это слишком большая площадь.
Усовершенствование метода капельного фильтра – перполяционный фильтр – разбрызгивание сточных вод на пласт щебня. Наиболее широко система с перполяционным фильтром стала применяться, когда были достигнуты успехи в области получения пластмасс с заданными свойствами. В современных системах очистки накопление бактериального материала осуществляется на пластмассовых дисках, смонтированных на вращающейся оси. Диски наполовину погружены в сточные воды, по мере их вращения бактерии периодически снабжаются питательной средой и кислородом. Сейчас метод капельного фильтра используют только при условии дешевой земли и мягкого климата.
Наиболее универсальным способом обработки сточных вод является обработка активным илом. Сточные воды смешивают с илом, образовавшимся в результате предварительного окисления вод, поэтому способ и получил такое название.
Как известно, ил представляет собой огромную популяцию различных бактерий, грибков и другой флоры, добавление которой к сточным водам приводит к быстрому установлению равновесия, способствующего разложению органических веществ, в результате которого образуются СО2 и Н2О. По существу авторы нового способа обработки изменили естественный биологический цикл таким образом, что скорость потребления питательного вещества (т.е., скорость разложения органического вещества) увеличилась на несколько порядков. Дальнейшее усовершенствование этого способа связано с разработкой методов надлежащего ухода и питания используемой популяции микроорганизмов.
Активный ил представляет собой аморфный коллоид с поверхностью 100 м2/г сухого вещества, имеет вид буро-желтых мелких хлопьев размером 3–150 мкм, взвешенных в воде. B 1 г сухого ила содержится от 108 до 1012 штук бактерий. При этом определенный вид бактерий способен окислять определенные вещества.
Бактерии, входящие в состав активного ила, способны перерабатывать только те сточные воды, из которых сформировался этот активный ил. Поэтому, если в состав очищаемых промышленных стоков будут введены новые вещества, например при изменении технологии производства, то потребуется время, чтобы бактерии, способные окислить именно эти вещества, размножились в достаточном количестве и смогли обеспечить наилучшую очистку.
Иногда даже приходится завозить на вновь создаваемое предприятие активный ил с другого предприятия, где очищаются аналогичные по составу воды и где в активном иле распространены нужные виды бактерий.
Обычно концентрацию активного ила поддерживают равной 2–4 г/л. В ходе очистки активный ил время от времени выводят из очистных сооружений, так как его количество растет. Часть его при этом используется в качестве ценного удобрения, если нет тяжелых металлов, часть стабилизируют, т. е. обрабатывают избытком кислорода для удаления всевозможной органики, предотвращая таким образом гниение. Часть поступает на анаэробное разложение. Аппаратура для аэробной биохимической очистки представляет собой так называемый аэротенк, или окситенк (рис. 4.5).
 
б) Анаэробная биохимическая очистка. В случае, если БПК намного выше нормы, а также для удаления избытка активного ила и отходов сельскохозяйственных продуктов применяют анаэробную биохимическую очистку в метантенках (реактор с мешалкой и теплообменником). При этом источником кислорода в воде служат группы кислородосодержащих анионов: NO ; SО ; CO .
В основе метанового брожения лежит способность сообществ определенных микроорганизмов в ходе жизнедеятельности сначала в фазе кислого водородного брожения с помощью бактерий гидролизовать сложные органические соединения до более простых, а затем с помощью метанообразующих бактерий превращать их в метан и в угольную кислоту.
Процесс окисления–восстановления – это переход электронов от субстрата-донора к конечному акцептору. Для аэробной реакции конечным акцептором является кислород, а при ферментации (анаэробной очистке) – органическое соединение, образующееся в результате «простого перемещения» водорода из одной органической молекулы в другую:
С6Н12О6 = ЗСН3СООН + 15 ккал;
2СН3СООН = 2СН4 + 2СО2.
Образующийся газ состоит из метана (65%) и СОз (33%) и может быть использован для нагрева до 45–55°С в самом метантенке, где происходит анаэробное брожение. Сброженный осадок имеет высокую влажность (95–98%), его уплотняют, сушат, затем используют в качестве удобрения или, если есть токсичные примеси, сжигают;
Однако не всякие сточные и природные воды могут быть очищены биохимическими методами. Нормы на содержание вредных веществ в сточных и природных водах, поступающих на биологические очистные сооружения, по некоторым металлам следующие: А13+ – 5 мг/л; Fе3+ – 5 мг/л; Сr6+ – 0,1 мг/л; Mg2+ – 1000 мг/л.
Не все органические вещества разлагаются на станциях биохимической очистки. Так, практически не разрушается бензин, красители, мазут и др. Эффективность биохимической очистки на самых современных установках составляет 90% по органическим веществам и лишь 20–40% – по неорганическим, т. е. практически не снижается солесодержание. Не могут быть очищены воды, содержащие более 1000 мг/л фенолов, 300–500 мг/л спиртов, 25 мг/л нефтепродуктов, т. е. для многих случаев эти методы не эффективны. В среднем эффективность анаэробного метода составляет около 40%. Сравнительная оценка очистки сточных вод различными методами представлена в табл. 4.2.

 

Процессы анаэробной очистки проводят в специальных метантенках при температуре 30–55°С, выделяющийся метан СН4 может быть использован для нагрева метантенка.
Например, в США при анаэробной очистке сточных вод животноводческого комплекса (500 голов свиней) за счет сжигания метана после анаэробной очистки комплекс не только обеспечивает себя электроэнергией, но иногда в летнее время может даже продавать ее. Образующиеся после анаэробной очистки сточные воды могут быть использованы для выращивания специальных одноклеточных водорослей типа хлореллы, которые в дальнейшем могут быть использованы на корм скоту. Цикл оказывается замкнутым.
Необходимо искать такие способы ликвидации отходов, которые дают возможность получать полезные продукты, например, дрожжи для выпечки хлебо-булочных изделий и для производства этилового спирта или для превращения отходов, образующихся при переработке древесной пульпы, в полезный продукт.
4. Обеззараживание воды
Последней стадией подготовки воды для питьевых и других нужд является ее обеззараживание, т. е. избавление от болезнетворных микроорганизмов, так как хорошо известно, что через воду могут распространяться такие страшные заболевания, как холера, брюшной тиф, инфекционный гепатит и др. Многие годы обеззараживание воды осуществляли с помощью обработки ее хлором. Однако стало известно, что полихлорированные бифенилы являются ядами, их находят в основном в жирах. Окисляясь, они образуют абсолютные яды – диоксины. Летальная доза диоксинов в организме для свиней, которые являются тест-объектами, – 10 мкг/кг их веса. Но эту дозу можно набрать и постепенно. Это привело ученых к выводу, что хлорирование может быть вредным. Во многих странах в 80-е годы перешли к обработке воды фторированием, но оказалось, что оно тоже вредно. Поэтому во всем мире и в России тоже отдают предпочтение обработке воды озонированием.
Биологическая очистка не может обеспечить обессоливания сточных вод. Как известно, вода питьевого качества должна содержать не более 1000 мг/л солей, из них: хлоридов – 350 мг/л, сульфатов – 500 мг/л. Необходимую в технических целях пресную воду получают методами выделения солей из сточных и природных вод.
5. Специальные методы очистки воды
Существует много специальных методов выделения солей из природных и сточных вод.
а) Дистилляция (выпаривание) – хорошо освоенный и широко применяемый метод. Мощность выпарных установок составляет 15–30 тыс. м3 в сутки. Одни из самых мощных выпарных установок располагаются на предприятиях атомной энергетики, где необходимо опреснение морской воды, например, в г. Шевченко (реактор на быстрых нейтронах). Основным недостатком этого способа является большой расход энергии – 0,020 Гкал/т. Геоопреснительные установки невелики по мощности (< 20 м3/с.), а стоимость опреснения велика.
б) Вымораживание. При медленном охлаждении соленой воды из нее в первую очередь выделяются кристаллики льда, практически не содержащие солей. По сравнению с дистилляцией вымораживание имеет энергетические, технологические, конструкционные преимущества.
в) Мембранный метод. Это электродиализ и гиперфильтрация, или обратный осмос. Электродиализ – современный метод деминерализации и концентрирования растворов. Основан на направленном переносе ионов диссоциированных солей в поле постоянного тока через ионселективную мембрану из естественного или синтетического материала. Схема электродиализа представлена на рис. 4.6. За рубежом этот метод получил широкое распространение для обессоливания морской воды. Например, установка в Ливии на 20 тыс. м3/с., в США – на 400 тыс. м3.

 

Метод обратного осмоса – это процесс разделения водных растворов путем их фильтрования через полупроницаемую мембрану под действием давления выше осмотического (до 6–8 МПа).
Процесс характеризуется небольшими энергозатратами. За рубежом освоено производство установок производительностью до 1 тыс. м3/с. У нас работают установки меньшей мощности, но есть разработки и проекты на большие мощности. Основные трудности этих методов – в создании полупроницаемых мембран и давления.
г) Ионный обмен. Метод широко применяется во всех странах мира. До настоящего времени этот метод является основным для приготовления глубоко обессоленной воды для АЭС и ТЭС с котлами сверхвысокого и критического давления. Кроме того, метод ионного обмена широко используется в водооборотных циклах на предприятиях для концентрирования и извлечения из сточных вод ценных компонентов (например, тяжелых металлов).
Основной недостаток общепринятых технологических схем ионного обмена – избыток растворов солей после регенерации ионообменных фильтров. Велик расход воды на собственные нужды (20–60% от производительности). Существует необходимость удаления органических веществ, чтобы избежать отравления ионитами. Поэтому ионный обмен с большим допущением можно назвать методом обессоливания сточных вод, скорее это технологический прием получения воды высокой степени очистки.
Очень широкое применение этот метод нашел в практике умягчения воды, т. е. избавления ее от солей постоянной жесткости.
6. Удаление остаточных органических веществ
После биохимической очистки могут остаться органические вещества, плохо усваиваемые микроорганизмами. Лучший способ их удаления – адсорбция активированным углем, который затем регенерируется при нагревании.
Обычно сточные воды пропускают через колонки с активированным углем, где обеспечен контакт с ним в течение 20– 40 мин. Это весьма эффективный метод, позволяющий очистить сточные воды до БПК < 1 мгО2/л (меньше нормы по ГОСТ). Аппаратура для применения этого метода довольно простая.
Адсорбция активированным углем эффективна для большинства органических соединений и используется для очистки бытовых стоков, жидких отходов перегонки нефти, фенолов и других ароматических соединений.
С целью перехода на более рациональное потребление воды и сокращения сброса загрязнений в водные объекты разработаны оптимальные нормы и укрупнены удельные показатели водопотребления и водоотвода для различных отраслей народного хозяйства с учетом совершенствования технологических процессов.
Введены в эксплуатацию замкнутые системы водного хозяйства на Краснодарском витаминном заводе, Липецком металлургическом комбинате.
В 1996 г. в г. Москве была проверена водоохранная деятельность на территории города. Установлено, что к основным нарушениям относятся неудовлетворительная эксплуатация и состояние водоочистного оборудования, отсутствие разрешений на спецводопользование, сброс сточных вод с превышением нормативных показателей. Участились случаи аварийных и залповых выбросов загрязняющих сточных вод на рельеф местности и в водоемы. В 1996 г. в водоемы города было сброшено 1305 тыс. т загрязняющих веществ (нефтепродуктов, тяжелых металлов, нитратов, хлоридов, взвешенных веществ и др.), но это почти в 2 раза меньше, чем в 1995 г. Количество загрязняющих веществ, сброшенных в 1996 г., составляет 22 наименования (табл. 4.3). Количество воды, используемой в оборотно-повторном водоснабжении, растет недостаточно: лишь на 16 предприятиях строятся очистные сооружения, а также системы оборотного водоснабжения.

 
 

4.4. Охрана литосферы

Твердые бытовые отходы и их утилизация. Общая площадь суши Земли составляет 149,1 млн км2, из них пригодны для обитания людей 133 млн км2.
Основные виды загрязнения литосферы – твердые бытовые и промышленные отходы. На одного жителя в городе в среднем приходится в год примерно по 1 т твердых отходов, причем эта цифра ежегодно увеличивается.
В городах под складирование бытовых отходов отводятся большие территории. Удалять отходы следует в короткие сроки, чтобы не допускать размножения насекомых, грызунов, предотвращать загрязнение воздуха. Во многих городах действуют заводы по переработке бытовых отходов, причем полная переработка мусора позволяет городу с населением в 1 млн человек получать в год до 1500 т металла и почти 45 тыс. т компоста – смеси, используемой в качестве удобрения. В результате утилизации отходов город становится чище, кроме того, за счет освобождающихся площадей, занятых свалками, город получает дополнительные территории. Например, в Москве к 1990 г. было зарегистрировано 150 свалок, из них только 3 – действующие. Часть новых кварталов Москвы размещена на территории бывших свалок, и поскольку во время строительства еще не было правильно организованных технологий свалок, то в этих районах города необходим особенно тщательный контроль воздуха на присутствие токсичных веществ.
Правильно организованная технологическая свалка – это такое складирование твердых бытовых отходов, которое предусматривает постоянную, хотя и очень долговременную, переработку отходов при участии кислорода воздуха и микроорганизмов. На рис. 4.7 дана схема безопасного захоронения отходов, которая может послужить иллюстрацией к вышесказанному, хотя она относится к промышленным отходам, но принцип складирования отходов, представленный на этой схеме, надежно обеспечивает охрану территории ОС.

 

На рисунке представлен разрез безопасного хранилища, построенного фирмой «Olin Chemical» для размещения отходов производства хлора и щелочи со своего завода в Чарлстоне (США). Дно камеры выстлано слоем земли и натриевой бентонитовой глины. В этом же слое предусмотрена система контроля любых утечек различных веществ из сбрасываемых отходов. Выше этого слоя уложен еще один слой бентонита и земли. \\\'Поверх второго слоя размещена система сбора ливневых стоков с насосом. Попавшая в отходы дождевая вода собирается, откачивается и направляется в очистные установки. Для хранилищ, предназначенных для размещения жидких органических отходов, требуется изоляция из синтетических материалов, а не из глины, поскольку через глину в конце концов происходит утечка органических жидкостей.
На заводе по сжиганию бытовых отходов наряду с обезвреживанием происходит максимальное уменьшение их объема (до 90% исходного). Однако необходимо учитывать, что сами мусоросжигающие заводы могут загрязнять окружающую среду, поэтому при их проектировании обязательно предусматривается очистка выбросов в ОС. Производительность таких заводов по сжигаемым отходам приблизительно 720 т/с. при круглогодичном и круглосуточном режимах работы.
В сельскохозяйственных районах строятся заводы по переработке старой полиэтиленовой пленки. Например, из собранной за год (более 1500т), очищенной от грязи пленки получают 1300 т труб, которые используют в мелиорации и в крупнопанельных домах.
В Японии, стране высокой бытовой культуры, налажен сбор в специальные контейнеры отходов полиэтилена, которые затем прессуются и из них создаются острова в Тихом океане для захоронения неутилизируемых в настоящее время отходов (например, ядерных отходов).
Во многих странах Европы вблизи больших магазинов установлены контейнеры для банок и бутылок разного цвета. Специалисты подсчитали, что на собранном таким образом сырье в городе с населением 0,5–1,0 млн человек может в течение года работать стекольный завод.
Твердые промышленные отходы и их переработка. В результате промышленной деятельности человека происходит загрязнение почвы, что приводит к выводу из строя земель, пригодных для сельского хозяйства. Основные виды промышленных отходов – шлаки тепловых электростанций и металлургических заводов, породные отвалы горнодобывающих предприятий и горнообогатительных комбинатов, строительный мусор и т.д. В особую группу выделяют загрязнение почвы нефтепродуктами и другими химическими веществами (в авиационной и других технологиях – это твердые осадки гальванованн и продукты травления металлов), которые пагубно воздействуют на почвенные микроорганизмы и корневую систему растений.
Объем извлекаемой из недр горной массы в нашей стране составляет свыше 15 млрд т/год. В хозяйственный оборот вовлекается около трети всего минерального сырья, а на производство готовой продукции расходуется менее 7% добытых полезных ископаемых. Очевидно, что нельзя без конца наращивать и без того колоссальные потоки отходов и попутных продуктов.
В железосодержащих шламах аглофабрик черной металлургии, например, содержится больше железа, чем в добываемой руде. Вместе с тем промышленность стройматериалов и строй¬индустрия добывают и потребляют ежегодно 3,5 млрд т нерудного сырья, большая часть которого может быть заменена отходами. Хозяйство нашей страны несет также огромные потери, связанные со складированием отходов. В результате только на транспортировку 1 т отходов и содержание отвалов расходуются огромные средства (приблизительно от 15 до 80 тыс. руб.).
Строительство комбинированных производств и отдельных технологических установок по переработке отходов особенно целесообразно в промышленных районах с большой потребностью в строительных материалах, изделиях, конструкциях. Например, методом катализированной кристаллизации стекла на основе доменных шлаков у нас в стране получают шлакоситал¬лы. Высокие физико-¬механические и физико-¬химические свойства шлакоситаллов, в первую очередь их износостойкость и химическая устойчивость, в сочетании с декоративностью делают их ценнейшим строительным материалом. Только в Москве шлако-ситалл нашел применение при строительстве таких известных объектов, как павильон «Металлургия» на ВВЦ (Всероссийский выставочный комплекс), аэропорт Шереметьево, универмаг «Москва», Центральный городской аэровокзал и др.
Груды старых шин от автомобилей различных марок на территории Чеховского регенераторного завода под Москвой – уже не свалка, а склад исходного сырья для производства резиновой крошки и регенерата – пластичного материала, частично заменяющего каучук в различных резиновых изделиях, в том числе и в новых шинах. Одна тонна регенерата – продукта переработки старых покрышек, позволяет сэкономить 400 кг синтетического каучука.
Все развитые страны имеют планы по созданию чистых (так называемых безотходных) технологий. Например, программа по экологии правительства Нидерландов до 2000 г. предусматривала уменьшить количество отходов, поступающих на сжигание, с 60 до 35%, на захоронение – с 55 до 10%.
В 1987 г. Конгресс США принял поправку к закону по опасным и твердым отходам, запрещающую захоронение отходов без их предварительной обработки по самым современным технологиям.
В качестве примера промышленной переработки твердых бытовых отходов на рис. 4.8 приведена схема технологии итальянской кампании «Сорайн Чеккини».
 

В России в 1991 г. была разработана программа, в которой предусматривался в целях комплексной переработки природных ресурсов и сырья переход на безотходные и малоотходные производства. При этом обеспечивались независимость экологической экспертизы и создание кадастра вторичных ресурсов для учета вторичного сырья. Однако этот процесс в связи с коренной перестройкой самой системы хозяйствования сильно затягивается, что усугубляет положение с охраной литосферы на территории России и стран СНГ.

Контрольные вопросы
1. Какие основные вещества являются загрязнителями окружающей среды в современном городе?
2. Как можно классифицировать антропогенные загрязнения окружающей среды? Приведите примеры.
3. Какие токсичные выбросы являются приоритетными загрязнителями атмосферы?
4. Что такое «кислотные дожди»? Какие методы их утилизации вы знаете?
5. Какие токсичные вещества содержат выхлопные газы автомобилей? Как их обезвреживают?
6. Что такое смог? Какие способы удаления частиц пыли из воздуха вы знаете?
7. Что такое «парниковый эффект»?
8. Какие изменения гидросферы связаны с хозяйственной деятельностью человека?
9. Какие методы очистки воды вы знаете? Какова их последовательность? Какова роль каждого из этих методов?
10. Что такое реагентный метод очистки воды? Приведите примеры.
11. Какие два типа биохимической очистки воды вы знаете? В чем их отличие?
12. Как можно классифицировать твердые отходы?
13. Как решаются проблемы со все возрастающими твердыми бытовыми отходами на Земле? Приведите примеры.
14. Какие примеры утилизации твердых промышленных отходов вы можете привести?
15. Какие вопросы следует решить человечеству для сохранения биосферы Земли? Приведите примеры успешного решения этих проблем.

Глава 5. Основы рационального природопользования

5.1. Основные понятия

Природопользование – непосредственное и косвенное воздействие человека на окружающую среду в результате всей его деятельности. Рациональное природопользование – планомерное, научно обоснованное преобразование окружающей среды по мере совершенствования материального производства на основе комплексного использования невозобновляемых ресурсов в цикле: производство – потребление – вторичные ресурсы при условии сохранения и воспроизводства возобновляемых природных ресурсов [31, 32].
Изучение процессов, протекающих в биосфере, и влияния на них хозяйственной деятельности человека показывает, что только создание экологически безотходных и малоотходных производств может предотвратить оскудение природных ресурсов и деградацию природной среды. Хозяйственная деятельность людей должна строиться по принципу природных экосистем, которые экономно расходуют вещество и энергию и в которых отходы одних организмов служат средой обитания для других, т. е. осуществляется замкнутый кругооборот.
В XX в. человечество в результате научно-технической революции пришло к следующему техногенному кругообороту веществ (рис. 5.1).
Казалось бы, сегодня всем ясно, что время «покорения природы» безвозвратно прошло и начался период глубокого, заинтересованного познания ее законов. Однако на практике объемы отходов в стране растут в два-три раза быстрее, чем объемы производства и численность населения. Лавина отходов загрязняет природу, их вредные токсичные компоненты засоряют землю, воздух, реки, моря и озера. Причина кроется в сиюминутной выгоде для производства. Но разумный человек не должен считать выгодой уничтожение всего живого, «безумное прожигание» ресурсов, не только своих, но и принадлежащих будущим поколениям. Следовательно, пришло время коренным образом изменить сам подход к понятию выгодности, когда речь идет о природопользовании.

 

Исходя из сказанного можно сформулировать наиболее общее определение рационального природопользования – это система взаимодействия общества и природы, построенная на основе научных законов природы и в наибольшей степени отвечающая задачам как развития производства, так и сохранения биосферы.
Из схемы техногенного кругооборота веществ (рис. 5.1) видно, что в отличие от природных кругооборотов он незамкнут во многих частях.

5.2. Безотходные и малоотходные производства

Термин «безотходная технология» впервые предложен российскими учеными Н.Н. Семеновым и И.В. Петряновым-Соколовым в 1972 г. В ряде стран Западной Европы вместо «мало- и безотходная технология» применяется термин «чистая или более чистая технология» («pure or more pure technology»).
В соответствии с решением ЕЭК. ООН и с Декларацией о малоотходной и безотходной технологиях и использовании отходов принята такая формулировка безотходной технологии (БОТ): «Безотходная технология есть практическое применение знаний, методов и средств с тем, чтобы в рамках потребностей человека обеспечить наиболее рациональное использование природных ресурсов и энергии и защитить окружающую среду» [21].
В литературе встречаются и другие термины, например, «безотходная технологическая система» (БТС). Под БТС понимается такое отдельное производство или совокупность производств, в результате практической деятельности которых не происходит отрицательного воздействия на окружающую среду. В определении безотходной технологии подразумевается не только производственный процесс. Это понятие затрагивает и конечную продукцию, которая должна характеризоваться:
• долгим сроком службы изделий,
• возможностью многократного использования,
• простотой ремонта,
• легкостью возвращения в производственный цикл или перевода в экологически безвредную форму после выхода из строя.
Теория безотходных технологических процессов в рамках основных законов природопользования базируется на двух предпосылках:
• исходные природные ресурсы должны добываться один раз для всех возможных продуктов, а не каждый раз для отдельных;
• создаваемые продукты после использования по прямому назначению должны относительно легко превращаться в исходные элементы нового производства.
Схема такого процесса – «спрос – готовый продукт – сырье». Но каждый этап этой схемы требует затрат энергии, производство которой связано с потреблением природных ресурсов вне замкнутой системы. Вторым препятствием полной замкнутости процесса является износ материалов, их рассеивание в окружающей среде. Например, долгое, на протяжении многих столетий, использование таких металлов, как серебро, свинец, цинк, медь и др., и их рассеивание в процессе этого использования в ОС привели к тому, что сроки их исчерпания из земных недр составляют, согласно своду международных прогнозов «Мир в 2000 году», всего один-два десятка лет.
Понятие безотходной технологии условно. Под ним понимается теоретический предел или предельная модель производства, которая в большинстве случаев может быть реализована не в полной мере, а лишь частично (отсюда – малоотходная технология – МОТ). Но с развитием современных наукоемких технологий БОТ должна быть реализована все с большим приближением к идеальной модели.
Критики концепции безотходного производства утверждают, ссылаясь на второй закон термодинамики, что как энергию нельзя полностью перевести в работу, так и сырье невозможно полностью переработать в продукты производства и потребления. С этим нельзя согласиться, поскольку речь идет, прежде всего, о материи и о Земле как открытой системе, а материю – продукцию в соответствии с законом сохранения вещества и энергии всегда можно преобразовать снова в соответствующую продукцию. Примерами служат безотходно функционирующие природные экосистемы.
Имеется и другая крайность, когда все работы, связанные с охраной ОС от промышленных загрязнений, относят к БОТ и МОТ. Необходимо помнить, что оценка степени безотходности производства – очень сложная задача и единых критериев для всех отраслей промышленности нет.
В целом комплексный подход к оценке степени безотходности производства должен базироваться на:
• учете не столько безотходности, сколько степени использования природных ресурсов;
• оценке производства на основе самого обычного материального баланса, т. е. на отношении выхода конечной продукции к массе поступившего сырья и полуфабрикатов;
• определении степени безотходности по количеству отходов, образующихся на единицу продукции.
Для точного определения степени безотходности необходимо введение поправки на токсичность отходов. Невозможно сопоставлять только по массе, например, отходы содового производства и отработанные растворы гальванических цехов. Для сравнительного анализа различных технологических схем однотипных производств, выпускающих продукцию одного и того же вида, на стадии их проектирования вполне может быть использован поправочный коэффициент на токсичность отходов.
Для расчета энергетических затрат следует рассматривать энергоемкость продукции с учетом коэффициентов безотходности. Только в этом случае можно получить объективный показатель безотходности рассматриваемого производства. Масштабы загрязнения ОС при производстве электроэнергии на ТЭС часто таковы, что могут свести к минимуму те экологические преимущества, которые удается достичь при совершенствовании основного производства. Например, в цветной металлургии о степени безотходности судят по коэффициенту комплексности использования сырья (во многих случаях он превышает 80%). В угледобывающей промышленности предприятие считается безотходным (малоотходным), если этот коэффициент не превышает 75%.

5.3. Основные принципы создания безотходных производств

Основные принципы создания безотходных производств заключаются в комплексном использовании сырья, создании принципиально новых и совершенствовании действующих технологий, создании замкнутых водо- и газооборотных циклов, кооперировании предприятий и создании территориально-производственных комплексов.
1. Комплексное использование сырья. Отходы производства – это неиспользованная или недоиспользованная по тем или иным причинам часть сырья. Поэтому проблема комплексного использования сырья имеет большое значение как с точки зрения экологии, так и с точки зрения экономики.
Необходимость комплексного использования природных ресурсов диктуется, с одной стороны, все увеличивающимися темпами роста объемов промышленных производств, загрязняющих окружающую среду, а с другой – необходимостью экономного их расходования, поскольку запасы основного минерального сырья ограничены, а цены на него непрерывно возрастают. С 1992 по 1996 гг. цены почти на все сырьевые материалы выросли более чем в 2 раза. В свою очередь рост цен ускоряет внедрение и разработку малоотходных и безотходных производств, поскольку расширяются пределы их экономической рентабельности.
Источниками отходов являются:
• примеси в сырье, т. е. компоненты, которые не используются в данном процессе для получения готового продукта;
• неполнота протекания процесса, остаток полезного продукта в сырье;
• побочные химические реакции, приводящие к образованию неиспользуемых веществ.
Рациональное комплексное использование сырья позволяет уменьшить количество недоиспользованных веществ, увеличить ассортимент готовых продуктов, выпускать новые продукты из той части сырья, которая раньше уходила в отходы.
Характерен пример цветной металлургии, где постоянно растет количество элементов, извлекаемых из минерального сырья. Из 90 элементов, обнаруженных в биосфере Земли, предприятиями цветной металлургии извлекались:
Год   Число элементов
1913 15
1930 20
1940 24
1960 63
1970 74
1980 82
1990          88
Из медьсодержащих руд, в состав которых входят 25 элементов, извлекается 21 элемент. Из полиметаллического сырья извлекают 18 элементов и получают более 40 видов товарной продукции. Доля полезных элементов, извлекаемых из природного сырья в цветной металлургии, – одна из самых высоких и достигает 80%. Повышение выхода продукта на каждой стадии процесса приводит к уменьшению количества отходов и увеличению комплексного использования сырья. Радикальное средство против протекания побочных реакций – изменение технологии.
2. Создание принципиально новых и совершенствование действующих технологий (схем). Это очень важный этап в технологии. Например, в основу создания атомной промышленности положены принципы, исключающие загрязнение окружающей среды или значительно снижающие его. На предприятии Атоммаша «Родон» высока надежность всех технологических схем и новых методов захоронения отходов. В черной металлургии создана новая технологическая схема, позволяющая сократить загрязнение среды – прямое восстановление железа.
3. Создание замкнутых водо- и газооборотных циклов. С позиций экологической безопасности и надежности не менее важной представляется задача по созданию замкнутых водо- и газооборотных циклов. Например, на ПО «Тулачермет» организован замкнутый газооборотный цикл, разработанный для производства суперфосфатных и других фосфорных удобрений, что позволяет избежать загрязнения окружающей среды фторидами.
4. Кооперирование предприятий, создание территориально-производственных комплексов. В большинстве случаев отходы одного производства являются сырьем для других производств. В связи с этим предлагается сам термин «отходы» заменить на «продукты незавершенного производства». При этом основная задача состоит в изыскании возможностей для применения продуктов незавершенного производства в других производствах или отраслях народного хозяйства, которые могли бы строить свою деятельность на них как на вторичных материальных ресурсах. Например, в Бразилии из отходов производства сахарного тростника получают спирт, используемый в качестве топлива для двигателей внутреннего сгорания.
Большая работа проводится в различных странах по созданию так называемых «банков отходов», т. е. по систематизации отходов различных отраслей промышленности, например, химической, нефтехимической отраслей, металлургии.
Наиболее благоприятные возможности для межотраслевого кооперирования складываются в условиях территориально-производственных комплексов (ТПК). Самый эффективный тип организации производства – сочетание межрайонной специализации с внутрирайонной кооперацией.

5.4. Безотходное потребление

Обычно проблемы экологии и ресурсосбережения связывают с деятельностью предприятий, упуская из виду, что различные ресурсы потребляются в быту. Объемы потребляемых населением материальных благ и ресурсов весьма значительны. Например, соотношение между потреблением и накоплением в национальном доходе составляет примерно 3/4 : 1/4. Следует также отметить тенденцию опережающего роста объемов отходов потребления по сравнению с отходами промышленности.
Пути перехода к «безотходному типу потребления» имеют свои особенности. Одна из них заключается в том, что отрасли, обслуживающие население, наименее «технологичны» в отношении безотходности. Помимо того, что материальные ценности в этих отраслях рассредоточены в соответствии со сложившейся системой расселения по территории всей страны, объемы образующихся отходов у конкретных потребителей весьма незначительны, а сами отходы очень разнородны и многокомпонентны. Положение осложняется тем, что сфера потребления в гораздо меньшей степени, чем сфера производства, поддается экономическому регулированию. Сфера потребления всегда ориентирована на конкретных людей, живущих в соответствии с многочисленными национальными традициями, особенностями регионов, уровнем культуры и т.д.
Таким образом, достижение рационального использования ресурсов в сфере потребления – сложная проблема и ее решение может быть достигнуто с помощью мер, условно разделяемых на две основные группы. Первая объединяет меры, предпринимаемые в отраслях общественного обслуживания (экономическое регулирование), вторая – меры воспитательного характера, направленные на выработку у каждого гражданина сознательного отношения к потребляемым ресурсам (регулирование воспитанием). На практике эти меры носят комплексный характер, взаимно дополняя друг друга. Внедрение новых технических решений, с помощью которых достигается экономия ресурсов, должно сопровождаться их пропагандой и созданием условий для широкого использования.
Например, одним из наиболее используемых ресурсов для бытовых нужд является питьевая вода. Жилищно-коммунальное хозяйство наряду с промышленностью и сельским хозяйством – крупнейший потребитель воды. Специалисты подсчитали, что водопотребление в расчете на одного жителя, пользующегося водопроводом, составляет 200–240 л/с., а пользующегося, образно говоря, «ведром» – только 20–40 л. Чаще всего потери воды вызваны техническими неполадками, нарушениями эксплуатации водопроводов и т.д. Речь идет, в частности, о неисправностях оборудования, утечках воды из труб. Кроме того, много питьевой воды расходуется не по назначению, например, на полив зеленых насаждений, и т.д.
Для решения вопроса рационального водопользования необходимо наладить тщательный учет всей расходуемой воды и оперативно устранять технические неполадки в системах водо-обеспечения. О том, что возможности для этого есть, свидетельствуют значительные различия в уровне потребления воды между различными городами и регионами страны, а также достигнутым уровнем потребления воды в ряде развитых государств. Например, в Москве начиная с 1997 г. ведется работа по установлению водосчетчиков в многоквартирных домах наряду с введением в строй в 1994 г. станции «Роса», осуществляющей контроль водопроводной воды по 70 показателям 30 раз в сутки. Таким образом, для обеспечения рационального потребления воды необходим комплекс мер, объединяющий прогресс в области экономики, организации и техники, дополненный продуманной эффективной воспитательной работой.
Все это в полной мере относится и к потреблению других видов ресурсов, в частности, топливно-энергетических. Например, потребление электроэнергии на бытовые нужды в последнее время ежегодно увеличивается на 10%, в то же время опыт показывает, что такое увеличение не всегда оправдано. Одним из направлений экономии электрической энергии является массовый выпуск бытовой техники, обеспечивающей рациональное потребление электроэнергии. Например, замена парка бытовых холодильников на более экономичные модели (с усовершенствованной теплоизоляцией, автоматическим оттаиванием) позволила снизить потребление электроэнергии. Переход на «зимнее» и «летнее» время, позволяющий лучше использовать «светлые» часы суток, в целом по народному хозяйству дает экономию около 3 млрд кВт-ч электроэнергии в год, на 3–4 млн кВт-ч снижает пиковые нагрузки энергосистем.
В принятой ООН «Всемирной стратегии охраны природы», в частности, записано: «Мы не унаследовали Землю наших отцов. Мы взяли ее в долг у наших детей». Поэтому именно принцип не брать «взаймы у потомков» должен стать определяющим при принятии всех без исключения решений по вопросам использования природных ресурсов.

Контрольные вопросы
1. В чем отличие техногенного круговорота веществ от биогеохимических круговоротов веществ в природе?
2. Отличается ли техногенный круговорот веществ в развитых и в развивающихся странах? Если да, то в чем это отличие?
3. Кем введены термины «безотходные технологии» и «малоотходные технологии»? Приведите аналоги этих терминов, принятые в англоязычных странах.
4. Какие основные принципы создания безотходных и малоотходных производств вам известны?

Глава 6. Экологический менеджмент

6.1. Понятие, предмет и функции экологического менеджмента

Экологическим менеджментом (ЭМ) называется безопасное управление природными процессами, которое определяется как биологическими особенностями объекта управления, так и социально-экономическими возможностями управляющего [13].
Предметом ЭМ является процесс управления современным производством, которое обеспечивает сочетание эффективности производства с охраной окружающей среды (ОС), в том числе среды обитания человека, и с рациональным использованием природных ресурсов.
В условиях современного экологического кризиса стратегией ЭМ является научно обоснованная направленность развития системы «человек–биосфера», ведущая к коэволюции природы и общества, на основе которой разрабатываются методологические и организационные основы управления.
Конкретные функции ЭМ:
• управление состоянием природных экосистем;
• управление состоянием социоприродных систем;
• управление состоянием и использованием природных ресурсов;
• управление восстановлением запасов природных ресурсов;
• управление процессами антропогенного давления на природу (регулирование процессов роста народонаселения, урбанизации, загрязнения ОС и использования отходов производства).
Инфраструктура ЭМ (см., например, [13]) включает основные факторы, определяющие благоприятную обстановку для его осуществления:
• формирование нового мировоззрения, в котором будут преобладать экологические приоритеты и ценности;
• развитие экологического образования в направлении овладения ЭМ;
• мониторинг экологических ситуаций;
• информационное и научно-методологическое обеспечение ЭМ;
• правовое обеспечение ЭМ;
• разработка общей стратегии развития общества;
• экономическое и финансовое обеспечение.
Основные принципы менеджмента:
• опора на экологическое сознание и экономическое мотивирование;
• предупредительность и своевременность решения проблем экологического развития;
• ответственность за экологические последствия всех управленческих решений;
• интеграция управления экологическими процессами;
• последовательность (непрерывность, поэтапность) решения проблем экологического развития.

6.2. Социоприродная экосистема как объект экологического контроля

За 3,5 млрд лет существования биосферы выработался механизм поддержания экологического равновесия естественных экосистем. Экологическое равновесие есть не что иное, как сохранение природной, естественной экосистемы в определенном состоянии в течение характерного для нее времени (например, для биосферы – в рамках геологического периода). Это равновесие сохранялось до появления в истории жизни на Земле рода Homo. В его позднейшей форме – Homo sapiens, возникшей около 40 тыс. лет назад, был изобретен новый способ приспособления к среде – изменение среды. Способ, которого не знал ни один живой организм, существовавший до появления человека. Этим способом явилась культура.
Что меняется в этой форме по сравнению со старой? В естественных экосистемах идет непосредственный обмен между живыми организмами и неживой природой. Но по мере исторического развития Homo sapiens между этими двумя частями экосистемы встраивается посредник, контролирующий естественный обмен. Этим посредником является человеческий разум.
По мере развития разум проникает в обменные процессы в экосистеме и преобразует их. При этом меняется характер обмена, он становится обусловленным, заданным, умышленным. Руководствуясь мировоззрением, человек действует целенаправленно. В результате человеческой деятельности естественные экосистемы трансформируются в социоприродные экосистемы, состоящие из неживой природы, живой природы и не природы – культуры. Человек использует законы и свойства природы против нее же самой, задавая природным процессам те направления, форму и темпы протекания, которые требуются ему. На основе познанных законов природы человек устанавливает свое господство над ней и обеспечивает его с помощью труда. Но труд – это не только великое благо для человека, освободившее его от рабской зависимости от природы. Труд как мощное средство воздействия на природные процессы таит в себе и другую сторону. Из фактора созидательного он при определенных условиях может превратиться в свою противоположность – разрушительный фактор, особенно в части разрушения ОС.
В условиях человеческой деятельности экологическое равновесие стало выступать как соотношение ресурсно-экологических возможностей природы и хозяйственных потребностей человека. И если в естественной системе происходит саморегуляция, самонастраивание всех подсистем экосистемы, то в социоприродной экосистеме общество берет на себя роль организатора жизни, роль управленца. Однако до недавнего времени это управление осуществлялось не в интересах сохранения и развития социоприродной экосистемы в целом, а в интересах сохранения и развития лишь одной ее части – самого человеческого общества. Пренебрежение «интересами» других подсистем – геосферы и биосферы, рассмотрение их в качестве средства увеличения комфорта социальной жизни оказывают дестабилизирующее воздействие на всю систему и нарушают экологическое равновесие.
Человеческое общество как подсистема биосферы всецело зависит от благополучия системы в целом. Другими словами, глобальное нарушение экологического равновесия, переход биосферы в иное качественное состояние означали бы для человечества катастрофу. Социальные механизмы могут ее отдалить или приблизить, но не ликвидировать. Поэтому перед человечеством возникает настоятельная необходимость поддержать экологическое равновесие, которое, во-первых, жизненно необходимо человечеству и, во-вторых, представляет собою эколого-экономический фундамент развития общества.
Во второй половине XX столетия появляется понимание зависимости благополучия общества от благополучия каждой подсистемы общей системы биосферы, понимание неприемлемости управления системой в эгоистически понятых интересах людей за счет переэксплуатации природы. Отсюда необходимость выработки новой стратегии управления системой в целях ее оздоровления. Этим целям, в частности, служит экологический менеджмент.
На небольшом примере использования поверхности планеты Земля человеком можно убедиться, насколько актуальны проблемы экологического менеджмента в настоящее время. Площадь всей суши на планете составляет 149,1 млн км2, из которых 40 млн км2 занято ледниками и пустынями. Антропогенные ландшафты занимают площадь 54 млн км2, из них 50 млн км2 – территории сельскохозяйственного использования и только 4 млн км2 – зоны урбанизации. В XXI в. в связи с ростом населения Земли ожидается, что площадь сельскохозяйственных угодий возрастет до 80 млн км2, а зона урбанизации может возрасти до 20 млн км2. Это значит, что около 100 млн км2, т. е. вся пригодная для использования суша будет радикально преобразована человеком.
В настоящее время сохранение экологического равновесия трактуется как достижение устойчивого развития. Под устойчивым развитием понимают устойчивость темпов экономического роста (по некоторым оценкам, не более 2–3% в год), при котором уровень давления на ОС компенсировался бы темпами самовосстановления ее качеств [26, 41]. Уровень жизни человека напрямую связан с потреблением природных ресурсов до тех пор, пока среда самовосстанавливает свои качества. Но как только темпы использования природных ресурсов превышают темпы самовосстановления среды жизни, человек, чтобы выжить, должен тратить новые ресурсы и энергию на поддержание качества ОС. В эпоху товарно-денежных отношений экологическое равновесие выступает как своеобразный товар. Его стоимость включает прямые затраты на охрану ОС и косвенные, связанные с отказом от перспективных экономически, но пагубных экологически начинаний. Примером последних может служить отказ от строительства скоростной железнодорожной магистрали Москва – Санкт-Петербург, строительство которой нанесло бы непоправимый вред всему европейскому региону России.
В связи с поисками выхода из экологического кризиса активизировались попытки построить научную теорию взаимодействия природы и общества. Идет научный поиск основных законов оптимизации взаимодействия общества и природы, которые стали бы законами саморегуляции системы «общество–природа». Среди этих законов центральное место принадлежит закону оптимального соответствия характера общественного развития состоянию природной среды.
По поручению ООН группой ученых разработана Концепция устойчивого развития общества, одобренная на конференции по окружающей среде и развитию в Рио-де-Жанейро («Рио-92») и рекомендованная всем странам мира как общая стратегия преодоления глобального экологического кризиса [26, 41] .
В России разработан и одобрен Государственной Думой и Правительством страны национальный вариант Концепции. Он рекомендован регионам страны для конкретизации и исполнения, хотя многие принципиальные моменты, связанные с механизмами и средствами реализации Концепции на местах, пока централизованно не определены.
Модель устойчивого развития Российской Федерации и ее регионов, предлагаемая Концепцией, предполагает
• снижение уровня давления на ОС;
• улучшение качества ОС по отслеживаемым параметрам чистоты атмосферы, гидросферы, почвы, снижение объемов отходов производства;
• сохранение биоразнообразия;
• повышение уровня жизни населения, в том числе увеличение средней продолжительности жизни.
Эти задачи и являются главными для экологического менеджмента.

6.3. Экологическая безопасность

Концепция устойчивого развития предполагает систему мер по обеспечению экологической безопасности. Экологическая безопасность – состояние защищенности биосферы и человеческого общества, а на государственном уровне – государства от угроз, возникающих в результате антропогенных и природных воздействий на ОС. В понятие экологической безопасности входит система регулирования и управления, позволяющая прогнозировать, не допускать, а в случае возникновения – ликвидировать развитие чрезвычайных ситуаций [13].
Экологическая безопасность реализуется на глобальном, региональном и локальном уровнях.
Глобальный уровень управления экологической безопасностью предполагает прогнозирование и отслеживание процессов в состоянии биосферы в целом и составляющих ее сфер. Во второй половине XX в. эти процессы выражаются в глобальных изменениях климата, возникновении «парникового эффекта», разрушении озонового экрана, опустынивании планеты и загрязнении Мирового океана. Суть глобального контроля и управления – в сохранении и восстановлении естественного механизма воспроизводства ОС биосферой, который направляется совокупностью входящих в состав биосферы живых организмов.
Управление глобальной экологической безопасностью является прерогативой межгосударственных отношений на уровне ООН, ЮНЕСКО, ЮНЕП и других международных организаций. Методы управления на этом уровне включают принятие международных актов по защите ОС в масштабах биосферы, реализацию межгосударственных экологических программ, создание межправительственных сил по ликвидации экологических катастроф, имеющих природный или антропогенный характер.
На глобальном уровне был решен ряд экологических проблем международного масштаба. Большим успехом международного сообщества стало запрещение испытаний ядерного оружия во всех средах, кроме пока подземных испытаний. Достигнуты соглашения о мировом запрете китобойного промысла и правовом межгосударственном регулировании вылова рыбы и других морепродуктов. Заведены международные Красные книги с целью сохранения биоразнообразия. Силами мирового сообщества проводится изучение Арктики и Антарктики как естественных биосферных зон, не затронутых вмешательством человека, для сравнения с развитием зон, преобразованных человеческой деятельностью. Международным сообществом принята Декларация о запрещении производства хладагентов-фреонов, способствующих разрушению озонового слоя (Монреаль, 1972).
Региональный уровень включает крупные географические или экономические зоны, а иногда территории нескольких государств. Контроль и управление осуществляются на уровне правительства государства и на уровне межгосударственных связей (объединенная Европа, СНГ, союз африканских государств и т.д.).
На этом уровне система управления экологической безопасностью включает:
• экологизацию экономики;
• новые экологически безопасные технологии;
• выдерживание темпов экономического развития, не препятствующих восстановлению качества ОС и способствующих рациональному использованию природных ресурсов.
Локальный уровень включает города, районы, предприятия металлургии, химической, нефтеперерабатывающей, горнодобывающей промышленности и оборонного комплекса, а также контроль выбросов, стоков и др. Управление экологической безопасностью осуществляется на уровне администрации отдельных городов, районов, предприятий с привлечением соответствующих служб, ответственных за санитарное состояние и природоохранную деятельность.
Решение конкретных локальных проблем определяет возможность достижения цели управления экологической безопасностью регионального и глобального уровней. Цель управления достигается при соблюдении принципа передачи информации о состоянии ОС от локального к региональному и глобальному уровням.
Независимо от уровня управления экологической безопасностью объектами управления обязательно являются окружающая природная среда, т. е. комплекс естественных экосистем, и социоприродные экосистемы. Именно поэтому в схеме управления экологической безопасностью любого уровня обязательно присутствует анализ экономики, финансов, ресурсов, правовых вопросов, административных мер, образования и культуры.

6.4. Формирование механизмов природопользования в рыночной экономике

Экономические соображения остаются главным препятствием для любого рода разумного планирования с целью долговременного использования ОС. Известный американский эколог Ю. Одум считает, что эта проблема возникает из-за резкого несовпадения рыночных и нерыночных ценностей [27]. Независимо от политической системы в разных странах промышленные товары и услуги, такие, как автомобили или электроэнергия, оцениваются очень высоко, тогда как не менее важные для жизни блага и услуги природного происхождения вроде очистки воды и воздуха и их возобновления остаются обычно вне экономической системы и обладают очень низкой денежной стоимостью или не обладают ею вовсе (следовательно, соответствуют «нерыночным» ценностям). «Экономисты не приучены думать о роли биологических систем в экономике, еще меньше они думают о состоянии этих систем. Стол экономиста может быть завален ссылками на последние данные о состоянии здоровья экономики, но экономист на самом деле редко бывает озабочен состоянием здоровья главных биологических систем Земли. Отсутствие экологической осведомленности вносит свой вклад в недостатки экономического анализа и формирование политики» [27].
Большинство экономистов придерживаются мнения, что рынок начинает давать сбои, когда он сталкивается с распределением многих природных ресурсов. Несостоятельность рынка определяется как неспособность ценовой системы поддерживать желательную активность и приостанавливать нежелательную.
Проведенный через конгресс США Национальный акт об охране ОС стал первой попыткой подвести в национальном масштабе правовую основу под распространение системы ценностей на природную среду. Акт требует, чтобы при каждом планируемом антропогенном нарушении составлялся официальный отчет об ущербе. Это должно привести к улучшению процедуры установления общей оценки, включающей оценки затрат и прибылей для природных и общественных событий.
Очень важно классифицировать ценности на рыночные и нерыночные. К рыночным ценностям относятся в основном производимые товары и услуги. На рынке свободного предпринимательства они распределяются по законам спроса и предложения посредством неограниченной конкуренции. В теории рыночная стоимость отражает общественную оценку товара и услуг, что приводит к эффективному распределению ресурсов. На практике это не всегда так, поэтому допускается необходимость некоторого регулирования со стороны государства.
Нерыночные ценности – это главным образом товары и услуги природы, их иногда называют «свободными» или «общими», или «общественными» товарами и услугами. Обычно эти «бесплатные» ценности существуют вне рыночной экономики. Нерыночные ценности поделены на две категории: характеризуемые и нехарактеризуемые.
По мнению большинства экономистов, характеризуемым нерыночным ценностям можно приписать денежную стоимость на языке рыночной экономики. Например, стоимость изъятия природной среды можно было бы определить исходя из того, что стоило бы обеспечение искусственной замены бесплатных благ и услуг (например, переработки отходов), предлагаемых природной экосистемой. Так можно было бы определить ценность реки для ассимиляции отходов.
Нехарактеризуемые ценности не могут быть включены в обычный в экономике расчет стоимости. Они представляют ценность для жизнеобеспечения природных систем. Леса, степи, реки, озера и океаны осуществляют, смягчают и стабилизируют атмосферные и гидрологические циклы и круговороты минеральных элементов. К этой же категории относится присущая биологическим видам ценность, ценность туземной культуры, красоты природы и множество эстетических ценностей, которые со временем получают признание людей. Нехарактеризуемые категории являются личными и общественными ценностями, а не частными рыночными, с которыми они очень часто приходят в конфликт.
Одним из первых экономистов, бросивших вызов свободному рынку как средству эффективного распределения ресурсов, был английский экономист А.С. Пигу [27]. Он заострил внимание на недостатках рынка, которые проявляют себя, если бизнес преследует только свои интересы, не заботясь об общественных. Он писал, что только государство может установить обязательные правила и использовать их для защиты воздуха и воды от опасности загрязнения.
Неокрепшие рыночные отношения в России создают новую угрозу для состояния ОС и рационального природопользования. Именно в этих условиях рационально внедрение системы экологического регулирования природопользования. Создание экономического механизма платного природопользования в переходный период формирования рыночных отношений предусматривает: плату за природные ресурсы, выдачу предприятиям лицензий на природопользование, плату за загрязнения, формирование экологических фондов за счет средств оплаты за выбросы, штрафных платежей и т.д. Формирование экономического механизма природопользования в условиях перехода к рынку будет происходить в том числе в направлении социально-экономической оценки ресурсного потенциала природы и экологического состояния территорий. Кроме того, большая роль отводится, в частности, кредитно-финансовому механизму природопользования.
Вопрос о разработке систем оценки стоимости элементарных единиц биосферы остается актуальным особенно для стран с переходной экономикой, к которым принадлежит и современная Россия.
Такие оценки должны отвечать на вопрос: какие затраты должно будет понести общество для того, чтобы восполнить потери в регуляторной функции биосферы, связанные с деградацией экосистем, обусловленной его деятельностью.
Существующие методики расчета стоимости территории и ущерба не позволяют подобным образом подойти к оценке стоимости. Более того, опыт группы под руководством отечественного эколога В.Н. Большакова по разработке оценок воздействия на ОС свидетельствует о том, что рассчитанные по этим методикам ущербы возобновимым ресурсам по своим размерам не сопоставимы с прибылью, которую можно получить при разработке нефтяных или газовых месторождений [3].
В работах экономистов при оценке возобновимых ресурсов используется так называемый ресурсный подход. Это означает, что живые компоненты экосистем получают стоимостную оценку только в том случае, если они вовлечены в процесс общественного производства, являются необходимыми для повседневной жизни общества [3]. Другими словами, они относятся к категории характеризуемых нерыночных ценностей [27].
Основные принципы, используемые при разработке методик определения ущерба ОС, возникающего при строительстве и эксплуатации промышленных объектов, включают следующие положения:
• необходимость компенсации затрат на воспроизводство нарушенных или уничтоженных природных ресурсов;
• учет потребностей экономики и предотвращение возможных потерь природных ресурсов, вызванных деятельностью промышленных предприятий (средозащитная деятельность);
• необходимость выравнивания экономических условий и последствий деятельности хозяйственных субъектов, компенсация экономических потерь (упущенных выгод).
По данным Большакова и др. [3], наименее разработанными при оценке ущербов, наносимых разным видам ресурсов, следует считать как теоретические, так и методические вопросы определения ущерба лесным и другим возобновимым ресурсам (охотничье-промысловые, ресурсы побочного пользования лесом и др.). Например, попенная плата в настоящее время не зависит от затрат на воспроизводство, подготовку и вовлечение в оборот лесных ресурсов. Реальные затраты и ассигнования на лесовос-становительные, лесохозяйственные мероприятия в различных условиях значительно (в десятки раз) различаются.
В зависимости от различных подходов схема расчетов также может различаться. Так, например, охотничье хозяйство владело только собственно объектами охоты и не владело охотничьими угодьями. Леса относились к ведению лесного хозяйства, являясь одновременно охотничьими угодьями, сельскохозяйственные угодья – к ведению сельского хозяйства. Это порождало методики расчета ущербов только для охотничьих животных или для охотничьих животных вкупе с охотничьими угодьями.
При использовании ресурсного подхода к оценке стоимости возникают две основные проблемы:
• цены ресурса. В советское время не было выработано единого подхода к проблеме ценообразования [3]. В настоящее время это усложняется появлением инфляции;
• при ресурсном подходе к оценке при расчете ущерба исключается огромный класс объектов, не имеющих в настоящее время потребительской стоимости. Другими словами, эти объекты относятся к категории нехарактеризуемых нерыночных ценностей [27].
Абсурдность подобного рассмотрения заключается в том, что человек при таком подходе к расчету ущербов окружающей природной среде фактически рассчитывает ущерб одним видом хозяйственной человеческой деятельности (например, при освоении нефтяных или газовых месторождений) другому виду хозяйственной человеческой деятельности (например, лесному, охотничьему, рыбному хозяйствам), но никак не природной среде [3].
Коренная перестройка системы общественных ценностей должна происходить по линии включения в их число стоимости ресурсов природы, выраженной в денежном эквиваленте.

6.5. Новый подход к оценке стоимости биотических компонентов экосистем

Разрабатываемый группой В.Н. Большакова подход к оценке стоимости ОС отличается тем, что оценивается стоимость ключевых видов, составляющих экосистему. Это позволяет более или менее корректно сопоставить работу по поддержанию постоянства ОС, осуществляемую живыми компонентами экосистем, с человеческой деятельностью. Любая хозяйственная или иная деятельность, наносящая ущерб экосистемам, должна оцениваться в неких единых и общих показателях для оценки того, чего же больше получит общество от данной хозяйственной деятельности – вреда или пользы.
Методика, разработанная специалистами упомянутой группы, дает основу для оценки воздействий человека на экосистемы и позволяет в сопоставимых единицах (ими могут быть единицы мощности или денежные) оценить средообразующую функцию биосферы [3]. Следуя этой идеологии, необходимо разделять ущерб, наносимый биосфере, и ущерб, наносимый отраслям хозяйства, эксплуатирующим возобновимые природные ресурсы, при строительстве и эксплуатации промышленных объектов в других отраслях.
Авторы нового подхода обосновывают возможность использования мощности в качестве первого приближения к реальной эколого-экономической оценке биологических ресурсов. Под мощностью понимается следующее. Все живые системы обладают определенной мощностью работы по сохранению упорядоченного состояния путем откачки неупорядоченности, т. е. уменьшения энтропии внутри этих систем. Эта мощность зависит от количества солнечной энергии, которую необходимо затратить в единицу времени для поддержания состояния живых систем с низкой энтропией. Измерение этой мощности может служить одной из отправных точек для оценки стоимости живых систем. Выражение стоимости в единицах мощности легко перевести в эквивалент затрат на получение такого же количества энергии от Солнца техническими средствами.
Для иллюстрации возможности использования в качестве первого приближения к реальной эколого-экономической оценке биологических ресурсов рассмотрим схему потоков через стабильную экологическую систему, представленную четырьмя трофическими уровнями (рис. 6.1).

 

Рис. 6.1. Схема потоков энергии через четырехуровневую экосистему:
Р – продуценты, Сl – консументы 1 порядка, СII – консументы второго порядка,
RED – редуценты, Ak и Rk - входящие и исходящие потоки энергии
для k-го трофического уровня соответственно (k = 1,2, ...)

Каждый трофический уровень представлен совокупностью популяций различных видов. Эти популяции играют разную роль в общем круговороте вещества и энергии (основную или вспомогательную), при этом стационарное состояние экосистемы одновременно оказывается динамическим – расход свободной энергии при протекании необратимых процессов компенсируется ее притоком от Солнца.
Условие стационарности согласно первому началу термодинамики (закону сохранения энергии) соблюдается, если
 .        (6.1)
Поскольку RK – затраты энергии на поддержание состояния в единицу времени (мощность), то интегральную оценку экосистемы можно получить сложением мощностей основных ее компонентов – их сумма является оценкой того количества энергии, которая потребляется в единицу времени.
Используя этот подход, можно оценить энергетическую стоимость различных биологических объектов. Максимально упрощенная оценка имеет вид:

                 (6.2)

где   – стоимость k-гo вида (кВт/т и Дж/т в год), Qk – энергетическое содержание тканей (кДж),  – время оборота энергии тканей (биомассы), RK  – интенсивность дыхания поддерживания (кВт/г или Дж/г в год), pj – коэффициент усвоения энергии при переходе с трофического уровня j -1 на уровень j.

Исходным материалом для оценки стоимости (6.2) должен служить список видов (объектов), компонующих данную экосистему с приписанными им значениями Qk (энергетическое содержание тканей одной особи или единицы биомассы),    (скорость оборота биомассы), Rk (энергия самоподдержания) и рk (коэффициент, отвечающий трофическому уровню данного вида).
Коротко остановимся на методике расчета параметров уравнения (6.2). При расчетах энергетической стоимости особей оценка Qk получается в результате умножения теплоемкости единицы массы тканей на общую массу особи:

Qk=qkWk,                  (6.3)
где qk – теплоемкость, Wk – масса тела особи.

В литературе накоплен большой материал по теплоемкостям (см., например, [27]).
Скорость оборота    обратно пропорциональна среднему времени регенерации, которую грубо можно считать равной одной трети максимального времени жизни.
Возможность поддержания Rk примерно вдвое превышает уровень основного обмена Y. В свою очередь основной обмен теплокровных животных зависит от массы тела и эта зависимость хорошо описывается уравнениями вида
Y = aWb,                    (6.4)
где коэффициенты a и b найдены для большинства групп животных (например, для млекопитающих: а =1,855 и b=0,74).
Для растительных объектов, например для древесины, энергию поддержания на 1 м3 запаса древесины можно оценить по формуле
Rk(год)=0,417рq,                (6.5)
где р – условная плотность древесины,
q – теплота сгорания на единицу массы.
Теплота сгорания q примерно одинакова для различных пород и колеблется от 19,6 до 21,4 кДж/г, составляя в среднем 20 кДж/г.
Таким образом, чтобы оценить стоимость биологических ресурсов по упрощенной методике (6.2), необходимо знать:
• энергетическое содержание одного грамма вещества;
• среднюю массу тела одной особи (для животных);
• дыхание поддержания (энергия существования);
• трофический уровень, пищевую специализацию и коэффициент утилизации энергии);
• плотность популяции или плотность биомассы (чистой первичной или вторичной продукции).
Для того чтобы оценить стоимость территории, необходимо располагать данными по плотности всех основных групп ресурсов.
Подход к назначению цены за единицу энергетического эквивалента стоимости строится на следующей основе. Способом, сопоставимым с утилизацией солнечной энергии автотрофными организмами, может быть наиболее экологически чистый способ производства энергии человеком – при помощи солнечных электроустановок. Этот способ сейчас весьма дорог. Так, в США цена фотоэлектрического модуля в 1986 г. составила 5,25 долл. за 1 Вт. Эту цену предлагается использовать в качестве первого приближения при расчетах стоимости производства биотических компонентов экосистем. Оценки величин ущербов будут снижаться со снижением стоимости производства энергии таким способом. По-видимому, это будет закономерным процессом, поскольку развитие экологически чистой энергетики, не эксплуатирующей ресурсы биосферы, должно стать одним из главных критериев и свидетельств изменений взглядов общества в целом на взаимоотношения в системе «человек–окружающая среда».
Ущерб рассчитывается перемножением стоимости биотических компонентов на единицу территории как временной лаг. Критерием для установления лага может служить время, необходимое для восстановления нарушенной экосистемы до первоначального уровня. Так, для многих лесных и тундровых экосистем приемлемым будет лаг, равный 100 годам.
В качестве тестового примера рассчитана стоимость участка тундры на полуострове Ямал в районе Борваненковского газоконденсатного месторождения. Стоимость 1 га данной территории оказалась равной 45 930 долл. США. Соответственно ущерб, наносимый безвозвратным изъятием данной территории, с учетом временного лага, равного 100 годам, составит 4 593 000 долл. США на 1 га.

6.6. Управление естественными и социоприродными экосистемами

До недавнего времени управление социоприродной экосистемой осуществлялось в интересах только человеческого общества, что привело бы к глобальному нарушению экологического равновесия и обозначило катастрофу для человечества. Целям новой стратегии для оздоровления системы служит, в частности, экологический менеджмент.
Само управление состоит из оценки состояния ОС, контроля изменения ее параметров, прогноза, принятия решений, их реализации через производственные структуры с помощью структур управления [13].
Безопасное управление природными процессами предполагает контроль качества среды обитания. Уровень экологического контроля зависит от экономического и культурного развития общества. Чем более развито общество, тем эффективнее реализуются процессы социально-экологического управления средой обитания.
Социально-экологическому контролю подлежат все компоненты системы «природа–человек».
Особенность иерархических систем управления заключается в том, что информация о состоянии объекта контроля может быть получена лишь с нижних уровней управляемой системы. А это предопределяет особые (основанные на доверии) отношения между контролирующей и управляющей системами и системой производства. Отсюда концепция современных информационно-управляющих природоохранных систем основывается на знании законов саморегуляции природных систем, на знании возможного предела вмешательства человека в эти саморегулируемые системы, за которым – необратимые катастрофические последствия.
Основные требования к проведению экологического контроля:
• гарантия достижения природоохранной цели путем выявления отклонений от нормативных значений контролируемых величин: атмосферы, гидросферы, почвы, выбросов промышленных предприятий и т.д. Превентивная ориентация контроля;
• отражение в планах производства природоохранной деятельности предприятий;
• эффективность организационной структуры контроля защиты ОС;
• индивидуальный подход к контролю: методы контроля должны быть понятны руководителю предприятия, рядовому работнику и контролеру;
• прогноз изменения состояния среды обитания, выделение признаков приближения ее к опасному состоянию, контроль за критическими состояниями среды: залповыми выбросами, аварийными ситуациями по состоянию ОС и т.д.
• работа по выходу из аварийной или стихийной ситуации, ликвидация возможности развития чрезвычайной ситуации из-за накопленных радиоактивных веществ, химического оружия, устаревших технологий и т.д.
Среди способов контроля различают: прямой непосредственный контроль за состоянием ОС с использованием технических средств по отслеживанию физических, химических, биологических параметров и факторов загрязнения атмосферы, гидросферы и почвы. Для оценки состояния ОС пользуются методом биоиндикации. При этом используется высокая чувствительность некоторых живых организмов к загрязнению, например, хорошими индикаторами загрязнения являются мхи, лишайники и водоросли.
Косвенный способ контроля заключается в использовании законодательных и административных рычагов управления.
Контроль может быть ручным, когда наблюдения за изменением ОС осуществляются вручную, или автоматическим, когда контроль за изменением ОС осуществляется в автоматическом режиме. Среди типовых автоматизированных систем контроля имеются системы контроля загрязнений атмосферы (АНКОС-АГ) и воды (АНКОС-ВГ).
По способу анализа контроль может быть прямым и дистанционным. В отличие от прямого дистанционный метод анализа состояния ОС предусматривает бесконтактный процесс получения информации с помощью аэрофотосъемки или космической съемки.
Поскольку экологическая оценка имеет много неопределенностей, то полезна экспертная оценка состояния ОС; она применяется в сложных и критических условиях. Это прерогатива специалистов-экспертов высокого класса, принимающих на себя ответственность в принятии решений в сложных экологических ситуациях.
Правовое обеспечение контроля состоит в выполнении законов по обеспечению сохранности ОС, а также норм правового регулирования использования воды, воздуха, почвы, недр и т.д. Сюда включается лицензионное право организаций на вылов рыбы, отстрел животных, вырубку леса, добычу полезных ископаемых и т.д.
Технологический контроль связан с соблюдением технологического режима производства, который регулируется нормами и требованиями по обеспечению экологической безопасности среды производства и продукции. Отвечают за технологическое обеспечение производства руководитель предприятия, главный инженер, технолог и эколог-менеджер. Нарушение технологического режима и регламента производства в погоне за прибылью – обычное явление при залповых выбросах и создании аварийной ситуации на вредных производствах.
Экономический контроль ОС заключается в предпочтении экологически чистого производства и продукта. Налоговый прессинг должен возрастать по отношению к вредному производству и вредному продукту.
Для снижения давления на ОС применяются информационные, предупредительные и карательные методы. Информационные включают мониторинг изменения параметров ОС, предупредительные – различные виды экологической экспертизы, административно-правовые – экостандарты, разрешения, лицензии и т.д., административно-предупредительные – проверку деятельности объектов возможного загрязнения, экологический аудит и т.д., карательные – различные формы пресечения (от закрытия предприятия до уголовного преследования виновных), экономические и финансовые меры воздействия.
К информационному обеспечению экологических проблем относятся сбор, обработка, анализ, синтез данных, построение моделей, создание баз данных для пользователей. Первичная экологическая информация собирается с помощью измерительных средств в процессе научно-практической деятельности. Эта информация обладает наивысшей прикладной ценностью. Вторичная информация – результат переработки первичной для дальнейшего использования в экологическом моделировании, мониторинге и экспертизе. Третичная информация является результатом переработки вторичной для предоставления потребителю для последующего принятия решений.
Экологическое моделирование занимается изучением экологических объектов и процессов на их моделях для расчета поведения человека в стационарно-изменяющихся условиях ОС, а также для выработки рекомендаций по координированию форм и масштабов хозяйственной деятельности с изменяющимися условиями среды.
Экологический мониторинг – система наблюдений, оценки и прогноза состояния окружающей природной среды и экологических систем, в том числе и находящихся в условиях антропогенных воздействий. Экологический мониторинг состоит из следующих ступеней: биологический мониторинг отслеживает связь в изменениях ОС с состоянием организмов биоты, в том числе и человека, особое значение придается учету канцерогенных и мутагенных факторов; геоэкологический (природно-хозяйственный) мониторинг обеспечивает наблюдение за природными экосистемами, агробиотой и индустриальными системами; методы этой ступени мониторинга должны определять способность ОС к самовосстановлению, биопродуктивности экосистем и различные ПДК, контроль обеспечивается сетью контрольных пунктов наблюдений и полигонов; биосферный мониторинг отслеживает изменения в биосфере, вызванные антропогенными воздействиями.
В России программа фонового экологического мониторинга осуществляется в ряде биосферных заповедников (Астраханский, Воронежский, Ильменский, Приокско-Террасный, Центрально-Черноземный, Сихоте-Алинский) и на кораблях Госкомгидромета.
Целью экологической экспертизы является превентивный контроль экологической безопасности, осуществление государственного контроля в области охраны ОС и рационального использования природных ресурсов. Эти функции делегированы государством Министерству природных ресурсов РФ, Государственному комитету РФ по охране окружающей среды и их территориальным органам соответствующими законами РФ.
Заключение экспертной комиссии обязательно для всех юридических лиц и граждан, деятельность которых связана с воздействием на окружающую природную среду, с природопользованием и т.д. Положительное заключение экспертной комиссии является одним из обязательных документов для открытия финансирования и кредитования реализации объекта.
Объектами государственной экологической экспертизы являются:
• предпроектные материалы по развитию и размещению производительных сил и отраслей народного хозяйства;
• проекты целевых федеральных социально-экономических и научно-технических программ, связанных с воздействием на ОС;
• проекты федеральных комплексных схем охраны и использования земельных, водных, лесных и других природных ресурсов;
• материалы экологического обследования территории для придания им статуса особо охраняемого природного объекта;
• ТЭО и проекты на строительство, реконструкцию, развитие, ликвидацию объектов и предприятий федерального значения, осуществление которых может нанести вред ОС;
• проекты нормативно-технической и инструктивно-методической документации в части охраны ОС и рационального природопользования, регламентирующих хозяйственную деятельность.

6.7. Экологическое сопровождение хозяйственной деятельности

Экологическая ситуация в России настоятельно требует перехода от дискретного к непрерывному процессу учета экологического фактора в процессе жизнедеятельности общества в рамках сохранения качества ОС. При этом предусматривается оценка воздействия на окружающую среду (ОВОС) и подготовка экологических разделов в рамках ТЭО или проектов, экологическая экспертиза, послепроектный анализ, экологический аудит, экологическая сертификация и лицензирование использования природных ресурсов, экологическое страхование и др. [13].
Рассмотрим этапы экологического сопровождения хозяйственной деятельности (ЭСХД).
Этап А. Планирование и согласование планов реализации деятельности. Здесь разрабатывается и утверждается предпроектная и проектная документация на право осуществления планируемой деятельности. Этап предусматривает проведение ОВОС.
Этап Б. Создание материальных объектов планируемой деятельности, обеспечивающих ее реализацию (строительство зданий, машин и механизмов). Этап предусматривает мониторинг ОС.
Этап В. Осуществление планируемой деятельности, происходящее: в штатном режиме (этап В1); во внештатном режиме (аварии, технологические сбои и т.д.) – этап В2. Предусматриваются мероприятия по локализации экологического ущерба, экологический аудит для определения причин возникновения нештатной ситуации.
Этап Г. Прекращение деятельности. Ликвидация должна сопровождаться проведением экологического мониторинга и аудита.
Экологическое сопровождение хозяйственной деятельности включает в себя:


назад |  1  2 3 4 | вперед


Назад
 


Новые поступления

Украинский Зеленый Портал Рефератик создан с целью поуляризации украинской культуры и облегчения поиска учебных материалов для украинских школьников, а также студентов и аспирантов украинских ВУЗов. Все материалы, опубликованные на сайте взяты из открытых источников. Однако, следует помнить, что тексты, опубликованных работ в первую очередь принадлежат их авторам. Используя материалы, размещенные на сайте, пожалуйста, давайте ссылку на название публикации и ее автора.

© il.lusion,2007г.
Карта сайта
  
  
 
МЕТА - Украина. Рейтинг сайтов Союз образовательных сайтов