Расчет кабеля Р-4 - Коммуникации и связь - Скачать бесплатно
Содержание
Конструктивные характеристики…3
1. Расчет первичных параметров…4
2. Расчет вторичных параметров…9
Вывод по работе…12
Список литературы…13
Приложение…14
Вопросы подлежащие разработке:
1. Определение конструктивных данных цепи кабеля связи
2. Расчет первичных параметров передачи цепи
3. Расчет вторичных параметров передачи цепи и их частотной зависимости
Исходные данные:
1. Вариант: 15
2. Тип кабеля: П-4(ЛПКС)
3. Рабочая температура: -16[pic]С
Конструктивные характеристики легкого полевого кабеля связи П-4
1. Конструкция жилы: 7м*0.32мм
2. Толщина изоляция: 2.1мм
3. Коэффициент скрутки: 1.05
4. Толщина опресовки четверки: 0.15мм
5. Толщина экрана: 0.1мм
Эскиз ЛПКС П-4
[pic]
Для расчета первичных параметров полевых кабелей введена формула
эквивалентного диаметра жилы:
[pic]
где [pic]- диаметр проволоки в жиле, n - количество проволок в жиле
d0=0.32[pic]=0.84(мм)
d1=( d0+2dиз)=(0.84+2*2.1)=5.04(мм)
a=1.41 d1=1.41*5.04=7.104(мм)
dk=7.7мм (по ТТХ)
П-4 – (Планировщик-4) является перспективным легким полевым кабелем связи
ВС РФ. Он предназначен для работы малоканальной полевой аппаратуры связи
типа П-330-1,3,6 и подключения четырехпроводной оконечной
аппаратуры техники связи.
Расчет Первичных и вторичных параметров передачи цепей кабелей связи
1. Расчет первичных параметров
R- активное сопротивление цепи
L- индуктивность цепи
С- емкость цепи
G- проводимость цепи
1. Расчет активного сопротивления
Формула для определения активного сопротивления имеет вид:
[pic] (1.1.1)
R0- сопротивление цепи по постоянному току,(Ом/км)
F(x)- функция, учитывающая действие поверхностного эффекта
p- поправочный коэффициент на вихревое поле
G(x)- функция, учитывающая действие эффекта близости
d0- диаметр жил
a- расстояние между центрами жил
H(x)- функция учитывающая действие эффекта близости
[pic]R- потери на вихревые токи при [pic] кГц
Формула для расчета сопротивления цепи по постоянному току имеет вид:
[pic] (1.1.2)
где
[pic] - диаметр проволоки составляющую скрутки
n - количество проволок в жиле
[pic] - коэффициент скрутки проволоки в жилу( для ЛПКС
[pic]=1.04)
[pic] - коэффициент скрутки жил
рассчитаем
R0=[pic][Ом/км]
Для звездной скрутки p=5
Значения коэффициентов F(x),G(x),H(x)- приведены в таблице 4.1 [1] в
зависимости от x
[pic] (1.1.3)
d0- диаметр жилы, мм
f- расчетная частота, Гц
|f,кГц |[pic] |F(x) |G(x) |H(x) |R200 |R-160 |
|10 |0.882 |0.00519 |0.01519 |0.53 |68.4 |58.5 |
|60 |2.16 |0.0782 |0.172 |0.169 |74.0 |63.4 |
|110 |2.92 |0.318 |0.405 |0.348 |91.4 |78.2 |
|180 |3.74 |0.678 |0.584 |0.466 |116.7 |99.8 |
|250 |4.41 |1.042 |0.755 |0.530 |142.2 |121.72 |
Пример расчета:
[pic] =0.0105*0.84[pic]=2.16
по таблице 4.1 [1]
F(x)=0.0782,G(x)=0.1729,H(x)=0.169
R200=68(1+1.042+[pic])=142.21(Ом)
Рассчитаем сопротивление для заданной температуры Т= -160С по заданной
формуле
[pic] Ом/км (1.1.4
где [pic]- температурный коэффициент сопротивления (для меди – 0.004)
R –16=68.42(1-0.004(-36))=58.5 (Ом/км)
1.2 Расчет индуктивности цепи
Индуктивность цепей линий связи обусловлены магнитным током внутри проводов
цепи и магнитными потоками между проводами цепи.
В соответствии с этим общую индуктивность цепи представляют в виде суммы
двух индуктивностей
[pic] (1.2.1)
где
[pic]- внутренняя индуктивность, обусловленная маг потоком внутри проводов
цепи
[pic]- внешняя индуктивность, обусловленная магнитным потоком между
проводами цепи.
Общая формула для расчета индуктивностей кабельных линий имеет вид ( с
учетом того, что для меди [pic]):
[pic] (1.2.2)
где
[pic]- магнитная проницаемость материалов проводов
|f,кГц |[pic] |Q(x) |L *10-3[Гн/км] |
|10 |0.882 |0.997 |1.29 |
|60 |2.16 |0.961 |1.26 |
|110 |2.92 |0.845 |1.26 |
|180 |3.74 |0.686 |1.23 |
|250 |4.41 |0.556 |1.21 |
Q(x) – функция, учитывающая частотную зависимость действия поверхностного
эффекта, см. формулу (1.1.3) и таблицу 4.1 [1]
Пример расчета:
L=[4ln[pic]+0.997]*1.05=1.26*10-3 (Гн/км)
Норма: [pic] мГн/км – общие нормы по альбому схем ВСМЭС часть1
Вывод: полученные значения индуктивности удовлетворяют норме.
1.3 Расчет емкости цепей линий связи
Емкость цепи – равна отношению заряда Qk напряженности между проводами U:
[pic] (1.3.1)
Для определения рабочей емкости цепей легких полевых кабелей связи
пользуются формулой:
[pic] [Ф/км] (1.3.2)
где [pic]- коэффициент скрутки; [pic]- диэлектрическая проницаемость
изоляции; [pic]- поправочный коэффициент учитывающий близость других
цепей и оболочки кабеля.
Значение коэффициента [pic] определяется в зависимости от типа скрутки по
формуле:
[pic] (1.3.3)
Вычисляем:
[pic] для полиэтилена 2.3;
Dэ=12.6-0.2=12.4(мм)
[pic] =[pic]=0.506
[pic][Ф/км]
Норма: [pic] [нФ/км]
Вывод: полученный результат удовлетворяет норме
1.4 Расчет проводимости изоляции цепей линии связи
Проводимость изоляции – зависит от сопротивления изоляции по постоянному
току и от диэлектрических потерь в изолирующем материале при переменном
токе. В соответствии с этом проводимость равна:
[pic] (1.4.1)
где [pic] - проводимость изоляции при постоянном токе – величина, обратная
сопротивлению изоляции ( для П-4 Rиз=5000 МОм); Gf – проводимость изоляции
при переменном токе обусловленная диэлектрическими потерями.
[pic] [Сим/км] (1.4.2)
где [pic]- тангенс учла динамических потерь [pic]=2*10-4
Сопротивление изоляции жил кабельных линий связи составляет значительную
величину. Следовательно G0 по сравнению с Gf, мала, и ей пренебрегают.
Отсюда проводимость изоляции кабельной цепи равна:
[pic] [Сим/км] (1.4.3)
[pic] (1.4.4)
|f,кГц |[pic],рад*10-3 |Gf, Сим/км*10-7 |G, Сим/км*10-7 |
|10 |62.8 |6.28 |6.28 |
|60 |376.8 |37.68 |37.68 |
|110 |690.8 |69.08 |69.08 |
|180 |1130.4 |113.04 |113.04 |
|250 |1570.2 |157.00 |157.00 |
Пример расчета:
Gf=62.8*103*0.05*10-6*2*10-4 (Сим/км)
Норма:[pic](мкСим/км)
Вывод: данный параметр удовлетворяет норме.
2. Расчет вторичных параметров
К вторичным параметрам относятся:
[pic] - коэффициент затухания;
[pic] - коэффициент фазы;
Zв – волновое сопротивление;
t – время распространения;
U – скорость распространения;
2.1 Расчет коэффициента затухания
Коэффициент затухания определяется по формуле:
[pic][Неп/км] (2.1.1)
Для определения коэффициента затухания для заданной температуре необходима
формула:
[pic][Неп/км] (2.1.2)
где [pic]- коэффициент затухания при t=+200C;
[pic] - температурный коэффициент затухания;
t - заданная температура.
Температурный коэффициент имеет сложную зависимость от частоты, а также
от конструкции кабеля. Поэтому при расчетах пользуются экспериментальными
значениями [pic], которые приведены в таблице.
|f,кГц |R,Ом/км |G, Сим/км*10-7 |[pic] ,Неп/км |[pic]*10-|[pic], Неп/км |
| | | | |3 | |
|10 |68.4 |6.28 |0.21 |2.7 |0.18 |
|60 |74.0 |37.68 |0.25 |2.5 |0.22 |
|110 |91.4 |69.08 |0.28 |1.9 |0.26 |
|180 |116.7 |113.04 |0.36 |1.8 |0.33 |
|250 |142.2 |157.00 |0.44 |1.6 |0.41 |
Пример расчета:
Рассчитаем [pic]
[pic] =[pic]( Неп/км)
По заданным имеющимся значениям [pic] рассчитаем [pic] для температуры
–160С
[pic] =0.21(1+2.7*10-3*(-36))=0.189 (Неп/км)
Вывод: полученные значения соответствуют теоретическим.
2.2 Расчет коэффициента фазы
Коэффициент фазы рассчитывается по формуле:
[pic][рад/км] (2.2.1)
Значение коэффициента фазы [pic]как видно из формулы, увеличивается прямо
пропорционально частоте исключение составляют сравнительно низкие частоты,
при которых [pic]определяется по другим формулам.
|F,кГц |[pic],рад*10-3 |L *10-3,Гн/км | [pic],рад/км |
|10 |62.8 |1.29 |0.05 |
|60 |376.8 |1.26 |2.90 |
|110 |690.8 |1.26 |5.49 |
|180 |1130.4 |1.23 |8.87 |
|250 |1570.2 |1.21 |12.21 |
Пример расчета:
[pic]( рад/км)
Вывод: значение полученного параметра соответствует норме.
2.3 Расчет скорости распространения
Скорость распространения определяется по формуле:
[pic][км/с] (2.3.1)
Пример расчета
[pic]( км/с)
2.4 Расчет времени распространения
Время распространения величина обратная скорости распространения:
[pic][мкс] (2.4.1)
Пример расчета
[pic]( мкс)
2.5 Расчет волнового сопротивления
Волновое сопротивление определяется по формуле
[pic][Ом] (2.5.1)
Пример расчета
[pic]( Ом)
|f,кГц |L |U, км/с |t, мкс |Zв, Ом |
| |*10-3,Гн/к| | | |
| |м | | | |
|10 |1.29 |124514.5 |8.03 |160.6 |
|60 |1.26 |125992.1 |7.93 |158.7 |
|110 |1.26 |126438.1 |7.91 |158.2 |
|180 |1.23 |127369.1 |7.85 |157.0 |
|250 |1.21 |128564.8 |7.77 |155.5 |
Вывод по работе
1) Рассчитали первичные и вторичные параметры легкого полевого
кабеля П-4. Полученные результаты соответствуют теоретическим.
Данный полевой кабель можно эксплуатировать в указанных
условиях
2) При расчете первичных и вторичных параметров кабеля наглядно
убедились в зависимости электрических параметров от конструкции
кабеля. По этому при проектировании кабелей связи необходимо
соблюдать определенные соотношения между параметрами кабеля и
его размерами.
3) При расчете первичных и вторичных параметров кабеля убедились в
зависимости электрических параметров от частоты и
эксплуатационной температуры. По этому при проектировании
кабельных линий связи необходимо учитывать влияние температуры
и рабочей частоты на параметры кабеля.
СПИСОК ЛИТЕРАТУРЫ
[1] Кабельно-линейные сооружения связи.; Под ред. В.В.Кольцова
;Москва;1982.
[2] Конспект лекций
[3] Военные системы многоканальной электросвязи. Учебное пособие в таблицах
и иллюстрациях. Часть 1.Выпуск1.-ЛВВИУС,1989
Приложение
К А Б Е Л Ь П - 4
К О М П Л Е К Т П О С Т А В К И
|N |Условное |Назначение изделия |Номинальная |Количество в |
|п/п |обозначени| |длина, м |комплекте |
| |е | | | |
|1 |П-4 |Строительная длина |1000 |15 |
|2 |ОК-4 |кабеля |5,0 |2 |
|3 |КШ-2 |Оконечный кабель для |1,5 |4 |
|4 |МЗ-4 |подключения оконечных |- |4 |
|5 |КТП-4 |устр-в Контрольный шнур |5,0 |5 |
|6 |КЗ-4 |для подключения к измер. |1,5 |2 |
|7 |КМ-4 |приборам Муфта защиты для|- |4 |
|8 |АП-2 |защиты линии связи от |- |2 |
|9 |КВ-4 |перенапряжений Кабель |11,5 |3 |
| | |подключения к
|