Я:
Результат
Архив

МЕТА - Украина. Рейтинг сайтов Webalta Уровень доверия



Союз образовательных сайтов
Главная / Рефераты / Фізика / Експеремент з дослідження сплаву AqZn


Експеремент з дослідження сплаву AqZn - Фізика - Скачать бесплатно


Зміст

Вступ…………………………………………………………………………………...2

Огляд літератури…………………………………………………………………..3

Загальні уявлення про ближній порядок………………………………………...3

Вплив упорядкування атомів на електроопір сплавів…………………………..8

Вплив опромінення швидкими частинками на впорядкування сплавів……….9

Діаграма стану Ag-Zn……………………………………………………………11

2. Методика експерименту…………………………………………………………..14

2.1 Метод електроопору……………………………………………………………..14

2.2 Термообробка зразків……………………………………………………………17

2.3 Опромінення зразків……………………………………………………………..17

3.Хід експерименту…………………………………………………………………..19

Приготування зразків……………………………………………………………19

Результати досліджень сплаву AgZn методом електроопору………………...19

Обговорення результатів………………………………………………………...26

4. Висновки…………………………………………………………………………...28

5. Перелік посилань………………………………………………………………….29


Вступ.

Численні експериментальні дослідження довели, що порядок в розміщенні атомів у сплавах істотно впливає на їх властивості. При впорядкуванні спостерігаються вагомі зміни магнітних, електричних та інших властивостей сплавів. Тому як експериментальне, так і теоретичне вивчення впорядкування атомів та його впливу на властивості сплавів має великий практичний інтерес для отримання матеріалів з потрібними властивостями. Існування ближнього порядку обумовлено фундаментальними особливостями атомної, електронної та спінової структур, і тому дані про ближній порядок можуть бути використані для вивчення характеру і природи міжатомних взаємодій в кристалах, та пов’язаних з ними особливостей сплавів. Ці дані можуть бути отримані на основі комплексних досліджень, а саме досліджень кінетики встановлення ближнього порядку, поведінки сплавів після деформації, відпалу, гартування, опромінення та інших видів обробок. Використовуючи цю інформацію, а також варіюючи склад, концентрацію, температуру та інші фактори, можна дістати певні уявлення про тип ближнього порядку, про пріоритети та тенденції в розміщенні атомів для певного виду сплавів.

Сплави на основі благородних металів вже не один раз використовувались для перевірки різних моделей, теорій твердих розчинів та атомного впорядкування. Цікавість до сплаву Ag-Zn обумовлена кількома причинами. Незважаючи на те, що ця система відома досить давно [1] та багато параметрів для неї є визначеними, все ж цього недостатньо, оскільки, наприклад, параметри ближнього порядку визначались лише для одиничних концентрацій. До того ж відомостей про особливості a-, x- фаз недостатньо для уявлення чіткої картини процесів близького впорядкування в межах досліджуваних концентрацій. Не менш цікавим є і практичне застосування сплаву. Найбільш широко сплави з срібла застосовують у виробництві припоїв. Срібні припої в більшості містять в якості легуючих домішок Cu, Zn, Cd, і застосовуються в реактивній техніці та літакобудівництві (необхідне поєднання корозійної стійкості, міцності при високих температурах та вібростійкості). Срібно-цинкові елементи в 5-6 разів легше звичайних, які використовуються в акумуляторах реактивних літаків, керованих снарядах, торпедах [2]. Крім цього відомо, що сірчані сполуки провокують корозію срібла. Потускніння та втрата відбиваючої здатності в повітрі пов’язані з наявністю сірчаних сполук (поряд з вологою та киснем) та утворенням плівки Ag2S. Підвищення стійкості до потускніння досягається введенням Zn, Pb, Cd [2]. Також був відкритий ефект пам’яті форми для сплаву Ag – 38 ат. % Zn [3]. Отже, сплав представляє не тільки теоретичний інтерес з точки зору внутрішньої будови, але й має широке застосування.

В роботі для аналізу структурних змін використовується метод електроопору. Поряд з іншими методами (рентгенівські, мікроскопічні) – це один з найчутливіших. В той же час він порівняно простий, не потребує складних методик. Однак чіткий однозначний зв’язок між зміною електроопору та внутрішніми перетвореннями структури сплаву ще й досі не встановлений, і для кожного сплаву він різний. До того ж він суттєво залежить від умов вимірювання (наприклад, температури, тиску), складу та попередньої обробки сплаву. Як відомо, діаграма сплаву є дещо наближеним відображенням границь існування твердих розчинів. При нерівноважних процесах (швидке охолодження) це особливо помітно. Трапляється, що в сплаві немає різких границь між фазами, а фаза, що утворилася поблизу цієї границі, поступово приймає характеристики сусідньої фази. Дослідження сплавів по вивченню ближнього порядку може збагатити уявлення про специфіку міжфазних переходів та якомога точніше визначити області існування твердих розчинів. Опромінення ж є важливою складовою аналізу сплавів на стійкість утворених фаз, швидкість їх утворення, розпаду та інш. Використовуючи вплив опромінення на зміну ступеня ближнього порядку, можна отримати більш детальну картину процесів для даного сплаву, що по суті і є метою роботи.

1. Огляд літератури.

Уявлення про ближній порядок.

Теорія ближнього порядку, як і теорія явища упорядкування в цілому, на даний момент розглядається в чотирьох напрямках. По-перше, це розгляд ближнього порядку з структурної точки зору, що виявляє структурні характеристики локального розподілу атомів, побудову твердих розчинів (в масштабі міжатомних відстаней) при наявності в них неоднорідностей, порівняних з розмірами атому. Другий напрямок – це встановлення зв’язків між параметрами (характеристиками) ближнього порядку та енергією впорядкування, що вводять як параметр теорії [4] – цей напрямок складає статистична теорія ближнього порядку. Третій напрямок – теоретичний аналіз факторів, що приводять до появи ближнього порядку, тобто аналіз природи явища ближнього порядку. Четвертий напрям – це кінетика ближнього порядку [4].

Розрізняють два основних класи впорядкованого розміщення атомів в решітці твердих розчинів – дальній і ближній порядок [5-6]. Якщо кожна з підрешіток в кристалічній гратці твердого розчину заповнюється переважно атомами певного сорту, то виникаючий розподіл атомів називають дальнім порядком. Але, як показують численні експерименти та ряд теоретичних міркувань, ступінь ближнього порядку не повністю визначає характер взаємного розташування атомів різного сорту по вузлам кристалічної гратки. Енергія взаємодії між атомами різного сорту різна, і тому кожен атом намагається оточити себе атомами або іншого сорту, або подібними. Різниця в енергії між атомами різного та одного сорту може стати причиною переважної локальної концентрації атомів того чи іншого сорту, навіть якщо в твердому розчині загалом не існує дальнього порядку. Такий розподіл називають ближнім порядком. Але частіше в реальних твердих розчинах не спостерігається чисто ближній або дальній порядок, тому ведуть мову про кореляцію у взаємному розміщенні атомів. Лише в найпростіших випадках ближній порядок розповсюджується на 1-2 координаційні сфери, частіше ця кореляція відчувається і на більш далеких відстанях. Для кількісної оцінки ступеню ближнього порядку вводять деякі параметри, наприклад параметр Каулі αі = 1 – Ni/N CiCАCВ = 1 – Pi/Cb , де Ni – число пар атомів А і В (де А і В – атоми двох сортів), що знаходяться на відстані ri ; N CiCАCВ – числа пар атомів А і В, які б знаходилися на відстані ri при хаотичному розміщенні їх по вузлам решітки (N – загальна кількість атомів, СА,СВ – концентрації атомів сорту А, В; Сі – число вузлів на і-й координаційній сфері, Рі – імовірність знаходження атому В на відстані ri від атому А, що знаходяться в початку координат (усереднене по всім атомам і-ї координаційної сфери значення імовірності знаходження атому В біля атому А). З цього визначення параметрів ближнього порядку випливає, що αі<0, якщо найближчі сусіди – атоми іншого сорту, та αі>0, якщо найближчі сусіди – атоми одного сорту. Знак αі для і=2,3,4,… складним чином залежить від параметра впорядкованого розміщення атомів.

Залежність параметрів αі від радіусу координаційної сфери різна для різних типів упорядкування, і це дає можливість по вигляду α(ri) визначити надструктуру, що є прототипом відповідного ближнього порядку [4].

Оскільки характеристики ближнього порядку не пов’язані з розташуванням атомів в структурно-нееквівалентних місцях гратки, то ближній порядок може існувати в будь-яких твердих розчинах при довільній концентрації елементів.

Про можливість існування ближнього порядку вже відомо досить давно [5, 8]. В перших теоріях дальнього порядку вже були розрахунки та деякі міркування про ближній порядок. Безпосередні виміри параметрів ближнього порядку по інтенсивності дифузного розсіяння рентгенівських променів почалися дещо пізніше [1, 7]. Спочатку їх було дуже небагато через велику кількість прецезійних вимірів та великого об’єму розрахунків. Перші роботи в цій області, здавалося, свідчили про те, що всі явища відбуваються у відповідності до законів класичної термодинаміки: вище точки Кюрі-Курнакова в сплавах, що упорядковуються, спостерігається ближній порядок, параметри якого спадають як 1/T зі зростанням температури. Припускалося, що ближній порядок впливає на фізичні властивості, при цьому цей вплив є аналогічним впливові дальнього порядку, але виявляє себе не так сильно. Наприклад, при утворенні ближнього порядку повинні спадати електроопір, зростати характеристична температура, тощо. Думки про такий вплив ближнього порядку на властивості сплавів широко розповсюджені і зараз.

Побутує думка, що ближній порядок встановлюється надзвичайно швидко через малу довжину дифузійного шляху, при цьому практично завжди мають справу з ближнім порядком. Однак в міру зростання кількості робіт по вивченню ближнього порядку, поступово з’ясовується, що ситуація виявляється більш складною, і якщо іменувати ближнім порядком деякий розподіл атомів, що відрізняється від хаотичного в твердих розчинах, то потрібно не лише відрізняти ближній порядок та ближнє розшарування (αJ>0), але й вести мову про структуру цього порядку, тобто про можливість існування нерівномірного розподілу по різних напрямках у кристалі, що визначається як номером координаційної сфери та симетрією кристалу, так і характером дефектів у зразку. Слід звернути увагу на те, що сплав в термодинамічній рівновазі фактично отримати так само важко, як і сплав, що не має дефектів решітки, а всі дефекти решітки істотно впливають на ближній порядок, його величину та структуру. Тому інтерпретація тих відомостей, що накопичені на даний момент, виявляється вельми важкою. Тут варто зазначити, що багато висновків про вплив ближнього порядку на фізичні властивості, по суті справи, отримані з евристичних міркувань, і тлумачення результатів вимірів часто є довільним, оскільки в багатьох випадках не мають можливості паралельно досліджувати фізичні властивості та ступінь ближнього порядку. А для отримання однозначних висновків про вплив ближнього порядку на фізичні властивості обов’язково потрібні паралельні виміри або на тих самих зразках, або на зразках, що пройшли однакову обробку.

Вельми суттєвим є питання про характер розміщення атомів різного сорту в сплавах з ближнім порядком [8-11].

В літературі [4] такі моделі взаємного розташування атомів, що можуть бути охарактеризовані терміном “ближній порядок”: а) гомогенний “рідиноподібний” ближній порядок, при якому всі вузли решітки кристалу є рівноправними і кожен з них може бути обраний за початковий; б) розподіл атомів у вигляді малих областей однакового складу з правильним розташуванням атомів на їх границях; в) розподіл атомів у вигляді подібних областей з правильно розташованими атомами, що розділені прошарками з неупорядкованим розташуванням атомів різного сорту; г) розподіл атомів у вигляді аналогічних областей, але з поступовим погіршенням правильності при наближенні до периферії областей; д) розподіл атомів у вигляді субмікрообластей, що розрізняються по складу, ступеню та типу порядку. Ймовірні і проміжні випадки.

Як показано у [4], рівноважний ближній порядок визначається мінімумом вільної енергії.

Ближній порядок виникає за рахунок різниці в міжатомних взаємодіях, існуючи між атомами різного сорту в твердих розчинах. Тому проблема взаємодій, обумовлених ближнім порядком, тісно пов’язана з проблемою міжатомних взаємодій в реальних твердих розчинах, однією з найбільш фундаментальних проблем фізики конденсованих середовищ.

Експериментальні дані свідчать про те, що такі впливи, як деформація, опромінення, різна термічна обробка, істотно впливають на локальний розподіл атомів по вузлам решітки. Деформація приводить до зменшення ступеня ближнього порядку; аналогічно впливає факт підвищення температури (але не для всіх сплавів). Більш того, виявлені випадки немонотонної температурної залежності окремих параметрів αі. Встановлена немонотонна зміна ступеня порядку з температурою загартування. Це явище в багатьох випадках пояснюють “доупорядкуванням” в процесі гартування від високої температури за рахунок міграції надлишкових вакансій. Виявлено підсилення ступеня порядку при опроміненні при кімнатних температурах в CuAl [6].

Ретельно проаналізувавши численні експериментальні дані, автори [6] зобразили таку схему встановлення ближнього порядку в сплаві в процесі відпалу після деформації або інших обробок, наприклад опромінення нейтронами та в ряду випадків після загартування [12]. Процес починається зі зростання ступеня ближнього порядку на першій координаційній сфері, який швидше йде в насичених дефектами областях кристалу. Потім він розповсюджується на інші координаційні сфери. Поступово впорядкування починає йти в неспотворених областях кристалу, в яких швидкість дифузійних процесів менше, ніж у спотворених. Одночасно йдуть процеси утворення концентраційних неоднорідностей, а також процеси розсмоктування дефектів, внесених обробкою. Однак вони відбуваються повільніше, ніж процес встановлення ближнього порядку, оскільки останній пов’язаний з міграцією атомів на значно менші відстані. Поява областей різного складу та ступеня порядку в свою чергу може призвести до зміни енергії впорядкування, оскільки остання пов’язана з електронною та спіновою взаємодією, що залежить від складу. Ці ефекти особливо відчутні з суттєво різними фізичними характеристиками компонентів. Поблизу дефектів енергія впорядкування також може відрізнятись від енергії в неспотвореному твердому розчині. Характер остаточної релаксації при відпалі, що визначається прагненням вільної енергії до мінімуму, буде залежати від досягнутого на початковій стадії стану. Якщо на цій стадії неоднорідності дійсно виникли (в достатній кількості), то в подальшому енергія твердого розчину може знижуватись або за рахунок розсмоктування неоднорідностей, або внаслідок зміни типу впорядкування в деяких областях розчину (наприклад, по типу сусідньої фази). У сплавах з малою швидкістю дифузії останній з цих процесів може бути енергетично вигіднішим, тоді неоднорідності не будуть розсмоктуватись протягом тривалого часу. Ще невідомо, чи завжди в однорідному твердому розчині ці неоднорідності будуть розсмоктуватись до кінця. Можливим наслідком вкладу енергії дефектів та неоднорідностей може бути поява ближнього впорядкування по типу фаз, що не спостерігаються на рівноважній діаграмі стану.

В роботі [8] були виміряні параметри α1 та побудована залежність α1 від температури відпалу для Cu3Al. Отримана складна залежність, пов’язана, за думкою авторів, з необхідністю збільшення часу для встановлення дійсно рівноважних значень ступеня ближнього порядку. На прикладі NiPt було показано, що αі при ізотермічному відпалі (принаймні після деформації) проходить через максимум, і навіть відпал при Т=700оС протягом 50 годин не доводить сплав до повної рівноваги.

Таким чином, необхідно відзначити, що для досягнення постійних значень αі при відпалі після деформації необхідно досить багато часу. Визначено[6], що αі має складну залежність, що не вичерпується простим співвідношенням αі~1/T. Складна залежність αі як приклад, подана в [8]. В CuAl виявлено аномалію теплоємності. Ці факти ще раз свідчать про необхідність комплексних вимірів фізичних властивостей ближнього порядку. Різні дефекти решітки (вакансії, дислокації, дефекти упаковки, тощо) істотно впливають на кінетику встановлення ближнього порядку та на структуру розподілу атомів в решітці, що досягається в певні скінченні проміжки часу. Ряд процесів, що відбуваються в однофазних твердих розчинах, імовірно є аналогічними процесам, що відбуваються в сплавах, що розпадаються поблизу границі розчинності. В однофазних твердих розчинах при відпалі після деформації має місце спрямована дифузія, тому можуть виникнути концентраційні неоднорідності та області, збагачені (збіднені) другим компонентом, в яких виникає значний ближній порядок. В міру зростання температури такі утворення можуть розсмоктуватися, що супроводжується зниженням ступеня порядку. Ці явища і обумовлюють складну залежність ступеня порядку від температури і часу.

Значний прогрес в експериментальному дослідженні фазового переходу порядок-безладдя в конкретних сплавах був досягнутий в останні десятиліття. До теперішнього моменту такі переходи були вивчені в приблизно 50 бінарних сплавах [13,14]. Ось основні риси цього переходу [35]. По-перше, це є дифузійне перетворення, до того ж дифузія на короткі відстані відбувається в незмінній або майже незмінній кристалічній гратці. По-друге, це є конфігураційний перехід, оскільки змінюється розташування атомів різного сорту по вузлах кристалічної гратки. Об’ємні зміни, тетрагональні та інші спотворення гратки, тобто неконфігураційні дефекти, підкоряються конфігураційному переходу, наприклад, симетричному. Тому, по-третє, параметрами переходу є параметри дальнього порядку η. По-четверте, фазовий перехід порядок-безладдя є перетворенням між станом з неповним дальнім порядком та ближнім. Зникненню дальнього порядку передує часткове розупорядкування, а невпорядкований стан є невпорядкованим у розумінні дальнього порядку, ближній в ньому завжди має місце.

1.2 Вплив упорядкування атомів на електроопір сплавів

Основні закономірності, що виявляються при дослідженні електроопору металів та сплавів, можна якісно зрозуміти, беручи до уваги хвильові властивості електронів провідності. Електронна хвиля утворює в просторі потенціал, що є періодичною функцією координат. Така ідеальна кристалічна решітка не має електроопору. Коли ж кристалічна решітка металу або сплаву містить які-небудь спотворення, що ведуть до порушення періодичності потенціалу, то з’являється розсіяння електронних хвиль, що обумовлює електроопір. Існує три основних види спотворень кристалічної гратки, що приводять до появи електроопору: 1) тепловий рух атомів; 2) порушення періодичності, пов’язане з чергуванням атомів різного сорту або наявністю вакансій (дірок) на вузлах кристалічної гратки, а також з наявністю впроваджених атомів, та 3) статичні спотворення решітки, що пов’язані зі зміщенням центрів коливань атомів від їх правильних місцезнаходжень.

В чистих металах, що не мають статичних спотворень та дірок, повинна існувати лише перша з вищезгаданих причин. Відповідний електроопір металу буде залежати і при абсолютному нулі повинен зовсім зникнути. Друга причина розсіяння електронів, що має місце в неповністю впорядкованих металах та сплавах, які мають дірки в вузлах та атоми в міжвузлових положеннях решітки, обумовлює додатковий електроопір, що залишається і при Т=0оК. До цього ж результату веде і наявність статичних спотворень решітки. Електроопір, що залишається при Т=0оК, називають залишковим електроопором. Залишковий електроопір може бути визначений з вимірів електроопору при низьких температурах та екстраполяції результатів до температури абсолютного нуля. Вплив неоднорідностей решітки, що пов’язані з порушенням порядку в чергуванні атомів та статичними спотвореннями, на електроопір при високих температурах, можна дослідити, усунувши пов’язану з тепловим коливанням атомів частину електроопору загартуванням до низьких температур.

Існують три основних, додаткових, в порівнянні з чистими металами, фактори, комбінації яких визначають особливості поведінки електроопору при відпалі, деформації або опроміненні твердих розчинів. Першим з них є зміна перерізу розсіяння електронів при встановленні або руйнуванні ближнього порядку (зміна ∆αі>0 призводить до ∆ρ>0, та ∆α<0 до ∆ρ<0). Другим фактором є зміна концентрації електронів провідності, що виникає за рахунок зміни електронної структури, обумовленої перерозподілом атомів в кристалічній решітці твердих розчинів (зміною ближнього порядку, появою чи руйнуванням концентраційних неоднорідностей). При цьому зниження електронної концентрації n* веде до зростання електроопору ρ і навпаки.

В бінарних невпорядкованих спавах А-В типу заміщення з необмеженою розчинністю компонентів залишковий електроопір ρо повинен істотно залежати від складу сплаву. Як добавлення атомів В до чистого металу А, так і додавання атомів А до чистого металу В порушує правильність кристалічної решітки і ρо повинне в обох випадках зростати від 0 (для неспотворених металів), досягаючи максимуму в середній частині концентраційної діаграми. Дослідження сплавів Ag-Au різного складу [16] підтверджують це.

Аналізуючи поведінку ρо (СА) або ρо (СВ) в сплаві АВ в літературі [17] помічено декілька цікавих особливостей, які в основному пояснюються впливом дальнього порядку. Це, наприклад, поява різких мінімумів поблизу точок, що відповідають стехіометричному складу. Була виявлена ще така закономірність: що вища температура відпалу, тим більший електроопір, що пояснюється меншим ступенем дальнього порядку при більш високій температурі [17]. Якщо досліди по вивченню температурної складової електроопору проводити так, щоб сплав при кожній температурі знаходився в рівновазі, то з’явиться додаткова зміна електроопору, що пов’язана зі зміною ближнього та дальнього порядку. При температурі переходу порядок-безладдя на кривій залежності ρ(Т) повинен спостерігатися злам, якщо фазовий перехід є переходом 2-го роду. У випадку фазового переходу 1-го роду стрибкоподібно змінюється не тільки температурний коефіцієнт, але й сам опір.

1.3 Вплив опромінення швидкими частинками на впорядкування сплавів

Нові можливості дослідження кінетики процесів впорядкування з’являються при вивченні впливу потоків швидких частинок на сплави, що упорядковуються. Дія опромінення швидкими частинками різного сорту на сплави є різною. Опромінення може здійснюватись зарядженими важкими частинками (протонами, α-частинками, уламками ділення і т. д.), нейтронами, електронами, γ-квантами.

Електрони, що отримали енергію від налітаючої частинки, в результаті взаємодії з кристалічною граткою в свою чергу передають їй енергію, що призводить до нагріву кристалу. При опроміненні металів електронами останні віддають значну частину своєї енергії саме електронам решітки, а не важким частинкам, на відміну від інших типів опромінення. В результаті в кристалі виникає відносно менша кількість дефектів.

В області кристала, що знаходиться поблизу траєкторії пролітаючої частинки, утворюється велика кількість дефектів, і окрім цього в результаті виділення енергії в цій області спостерігається значне локальне збільшення температури, що може навіть призвести до плавлення металу в цій області. Наступне швидке охолодження цих областей, як наслідок теплообміну з іншими частинами кристалу, може привести до ефектів, аналогічних гартуванню металу у вказаних областях від досягнутих при пролітанні частинки високих температур. У випадку опромінення упорядкованого сплаву в області локального нагріву може виникнути невпорядкована фаза, що фіксується таким нагріванням.

Виникнення великої кількості надлишкових (нерівноважних) дефектів кристалічної решітки може призвести до значного збільшення швидкості протікання різних типів процесів, пов’язаних з переміщенням атомів в твердому тілі. З часом міжвузлові атоми заповнюють вакансійні місця, що веде до додаткового виділення тепла. Зменшення числа дефектів призводить до уповільнення вищезгаданих процесів.

Вплив опромінення на сплави, що упорядковуються, обумовлений двома причинами. По-перше, локальний нагрів може привести до зміни стану упорядкування, і по-друге, дефекти, що виникли при таких температурах, коли вони мають достатню рухомість, будуть прискорювати процес наближення до рівноважного (при даній температурі) стану сплаву.

Електрони з енергією 0,5 еВ створюють зміщення у вигляді окремих пар Френеля, розділених кількома атомними відстанями[17]. Рухливість вакансій спостерігається при Т>~0,25TM (ТМ – температура плавлення). При температурах менше 0,6ТМ вакансії та міжвузлові атоми утворюються набагато швидше, ніж вони можуть відходити на дислокації, границі зерен та інші стоки. Тому утворюється їх надлишок по відношенню до рівноважної кількості.

Опромінення електронами значно прискорює утворення збагачених Zn зон Гін’є-Престона та рівноважної β-фази в сплавах AgZn [17].

Результати розрахунків сегрегації Zn на поверхні пор в опроміненому сплаві AgZn показали, що ступінь сегрегації залежить віл температури, радіусу пори та швидкості атомного зміщення [17].

1.4 Діаграма стану та деякі параметри сплаву AgZn.

Багато важливих характеристик, таких як розчинність, точки плавлення, розпаду, фазових перетворень, тощо, можна отримати з діаграми станів.

Відомо [24], що з більшістю легкоплавких металів срібло утворює складні діаграми стану з кількома проміжними фазами і значними областями твердих розчинів на основі срібла. Це такі системи, як AgAl, AgMg, AgLi, AgIn, AgZn, AgCd, тощо. Багато з цих сплавів вже знайшли застосування у промисловості.

Серед класифікації сплавів першим історично виділеним класом електронних сполук були фази Юм-Розері [33]. Це досить обширний клас металічних сполук, що утворюються в сплавах благородних та перехідних металів з простими та полівалентними, а в ряді випадків – і на основі полівалентних металів. Для цих фаз характерне певне число валентних електронів на атом і на початку вони виділені як співвідношення Юм-Розері (е/а = 3/2, 21/13, 7/4). Наявність таких фаз визначено і у AgZn.

Фаза

Співвідн. Ю.-Р.

Решітка

Інтервал реалізації е/а

Розмірні обмеження

Впорядкування

b

3/2=1,5

ОЦК

1,01-1,70

0,05

Так

z

3/2=1,5

ГПУ

1,22-1,83

0,15

Так

g

21/13=1,62

Складна куб.

1,40-1,70

Малі

Не повністю

e

7/4

ГПУ

1,35-1,90

-

Ні

h

1,89

ГПУ

1,88-2,0

-

-

Після того, як вперше була знайдена крива ліквідусу, ця система звернула на себе увагу з боку багатьох дослідників. Границі фаз в твердому стані встановлені рентгенографічними та мікроскопічними методами [1]. Діаграма, що зображена на рисунку 1, запозичена з [1]. Кристалічна структура b,g,e - фаз визначена в [25]. Температури чотирьох перитектичних реакцій та склад перитектичних розчинів становлять: 710оС, 39,0%; 665оС, 61,3%; 636оС, 71,2%; 430оС, 97,8%Zn.

Розчинність Zn в Ag визначалася рентгенографічно та мікроскопічно [1]. При 710оС розчинність становить 32,1 ат.% (22,3 ваг.%) Zn. При температурах нижче 258оС, коли a-фаза є в рівновазі з z-фазою, розчинність Zn в Ag значно зменшується: при Т=431оС це 5%, а при 150оС це 1 ат.%. Сплав з 33 ат.% Zn після холодної обробки зі значним ступенем деформації та відпалу при 100оС має 2-фазну структуру.

При гартуванні невпорядкована b-фаза перетворюється в упорядковану b’-фазу з ОЦК-граткою, що при відпуску трансформується в стабільну гексагональну z-фазу. Перетворення bÛz супроводжується двократною зміною модуля пружності.

Ефект пам’яті форми виявлений в роботах [5, 26]. Було досліджене утворення термопружного мартенситу в Ag-38 ат.%Zn. З метою придушення виділень a-фази зразки після витримки 1-2 хв. При Т=700оС, тобто на 5оС нижче температури солідуса, загартовували в NaOH при 0оС. Металографічні дослідження зразків після електрополірування виконувалися при збільшенні 200. При охолодженні сплаву з метастабільної b’-фази утворюється мартенсит в інтервалі від -160оС до -180оС. Температура початку оберненого перетворення становить –170оС, кінця –150оС. Мартенсит повністю термопружний і не спостерігається при Т=150оС. Голчаті кристали мартенситу формуються в пакети, зростання яких відбувається за рахунок b’-фази. Мартенситні перетворення відбуваються лише у свіжозагартованому сплаві; після витримки при Т=20оС b’-фаза розпадається. Пластинка завтовшки 0,5 мм з цього сплаву, що була зігнута в мартенситному стані на кут 90о при нагріванні вище –160оС повністю випрямлюється. Після повторення 2-3 циклів спостерігається явище, що пояснюється неповним зворотнім перетворенням деформованих мартенситних пластин [27].

Вивчені структурні перетворення в сплаві Ag-50 ат.%Zn [28]. Впорядкована b’-фаза починає перетворюватись в z-фазу після холодної деформації. Гексагональна структура z знову переходить в ОЦК, однак це відбувається за “дуже короткий час” [28]. zо-фаза після холодної деформації та старіння при кімнатній температурі перетворюється в b’-фазу. У роботі [28] зроблений висновок про те, що b’-фаза в сплаві з 50 ат.%Zn рівноважна при кімнатних температурах.

Для двох структурних станів b’ і z-фаз сплаву AgZn еквіатомного складу експериментально досліджувались оптичні властивості в діапазоні спектру від 0,07 до 10 еВ [18]. Також розрахований зонний спектр і оптичні властивості b’-AgZn.

Структурне перетворення b’Ûz призводить до появи в оптичному спектрі нової смуги поглинання і супроводжується зміною кольору. В області (0,07 – 4 еВ) теоретичний і оптичний спектри співпадають. Природа змін кольору пов’язана зі зміною електронної структури.

Максимальна розчинність для AgZn: Ag в Zn-5, Zn в Ag 32,1 ат.% [29].

Рисунок 1. Діаграма станів AgZn

Фаза b має ОЦК-решітку (А2-структура, а=0,318 нм), b’-кубічна типу CsCl (В2-структура, а=0,311нм), z-гексагональну (а=0,76356 нм, с=0,28200 нм); g-кубічна типу g-латуні (а=0,9349 нм); e-гексагональна типу магнію (а=0,276 нм, с=0,430 нм, с/а=1,55-1,56) [30].

Сплав AgZn терпить кристалографічне перетворення В2-А2 без спотворення кристалічної гратки при Т=545оС [34]. Цинк підвищує електроопір срібла сильніше, ніж Cd, але менше, ніж Mg, Al, Sn, As. Твердий a-розчин AgZn має механічні властивості, близькі до срібла [2].

Основні показники опору значним пластичним деформаціям:

НВ@25 кгс/мм (твердість по Брінелю);

sВ=14-17 кгс/мм (часовий опір);

Основні показники пластичності:

y=70-90% (відносне звужування після розтягу)

d=40-90% (відносне видовження після розтягу).

Більш детальні характеристики можна отримати в [24, 31, 32].

2. Методика експерименту.

2.1 Метод електроопору.

Для оцінки процесів, що відбуваються в зразках сплаву AgZn після різних видів обробок в роботі застосовується метод електроопору. Для реєстрації найменших структурних змін необхідно виключити вплив на вимірюваний опір всіх частин схеми, що можуть проводити струм і що не належать зразку. Ця умова була виконана вибором компенсаційного методу виміру електроопору. Принцип вимірювання електроопору зображений на рисунку 2. Невідоме значення електроопору Rx знаходять через падіння напруг на зразку та еталоні, значення опору якого відоме (в цій схемі це елемент Р 321, його R0 = 0.1 Ом). Завдяки джерелу постійного струму в схемі протікає струм, що не залежить від опору ділянки електричного кола. При почерговому підключенні напруг U1 та U2 досягають такого стану, коли сумарний струм через Rx та R0 відповідно дорівнює нулеві. Тоді І = U1/Rx = U2/R0 або Rx = R0žU1/U2 . Для зменшення помилки струм І пропускається в двох протилежних напрямках. Це робиться за допомогою перемикача П 308 (див. рис.3). Виміри робляться по кілька разів на одному зразку і вираховуються середні значення. Для виключення теплової складової електроопору зажим зі зразком занурювався у термостат з рідким азотом.

Рисунок 2. Принцип вимірювання електроопору.

2.2 Термообробка зразків.

Для відпалу, гартування зразків використовувалась спеціальна установка. Її основні частини подані на схемі 4. Вона складається з кварцевої труби 1, з розміщеною на ній піччю 2, блоку підключення до вакуумної системи 3, та інертного газу 4, системи скидання 5 зразка в піч і потім в гартуюче середовище, що міститься в герметичному бачку. Для системи 5 використовувався електромагніт 7. Для відкачування повітря з системи застосовувався форвакуумний насос НВПР-66, вакуум контролювався вакууметром ВИТ-2 з термопарнометричним перетворювачем ПМТ-2. Температура в печі підтримувалася терморегулятором ВРТ-3 з точністю 1оК.

Контроль температури здійснювався за допомогою хромель-алюмельової термопари, що була підключена до цифрового вольтметру. Градієнт температури в робочій області не перевищував 0.4о К/см. Відпал зразків у вакуумі при температурах вище 200оС призводить до випаровування цинку зі зразків, тому всі термообробки проводилися в атмосфері аргону. В початковому стані зразки розміщувалися у верхній частині труби, де температура не перевищує 30оС при будь-якій температурі печі. Після того, як система відкачана і через неї 2-3 рази прокачаний аргон, піч виводиться в режим нагрівання. Перше спрацьовування електромагніту приводить до спускання зразків системою скидання на тонкому дроті з константану на потрібну висоту. Довжина дроту була наперед виміряна таким чином, щоб зразки після першого натиснення кнопки для спрацьовування електромагніту були на висоті, що відповідає середині печі. Зразки, після того як спустились в піч, нагріваються і витримуються при певній температурі. Якщо відпал робиться під гартування, то за 2-3 хвилини до закінчення відпалу бачок заповнюється гартуючим середовищем. Після закінчення відпалу друге натиснення кнопки приводить до скидання зразків в гартуюче середовище (вода при температурі Т = 5оС). Таким чином, загартування можна провести без контакту зразків з оточуючим середовищем.

2.3 Опромінення зразків

Зразки опромінювались на лінійному прискорювачі електронів ІЛУ-6. Температура зразків під час опромінення контролювалась за допомогою термопари і не перевищувала 60оС (в цьому випадку підсилення дифузії за рахунок температури є незначним). Опромінення проходило за таких умов: енергія пучка 1.5 МеВ, густина 5*1013 ел/см2*с, струм 3 мА. Для опромінення були вибрані флюенси 2*1017, 1018, 1.5*1018 е/см2, які відповідають екстремальним або найбільш характерним точкам зміни електроопору.

Рисунок 4. Схема установки для термообробки зразків.

3. Хід експерименту.

3.1 Приготування зразків.

Для вимірювання електроопору зразки були прокатані на валках заготовок завтовшки 1 мм до фольги 0.12 мм з

назад |  1  | вперед


Назад


Новые поступления

Украинский Зеленый Портал Рефератик создан с целью поуляризации украинской культуры и облегчения поиска учебных материалов для украинских школьников, а также студентов и аспирантов украинских ВУЗов. Все материалы, опубликованные на сайте взяты из открытых источников. Однако, следует помнить, что тексты, опубликованных работ в первую очередь принадлежат их авторам. Используя материалы, размещенные на сайте, пожалуйста, давайте ссылку на название публикации и ее автора.

281311062 © insoft.com.ua,2007г. © il.lusion,2007г.
Карта сайта