Я:
Результат
Архив

МЕТА - Украина. Рейтинг сайтов Webalta Уровень доверия



Союз образовательных сайтов
Главная / Рефераты / Математика / Інтерполяція


Інтерполяція - Математика - Скачать бесплатно


План

Інтерполяція

Інтерполяційна формула Лагранжа

Інтерполяційна формула Ньютона

13.16. Інтерполювання функцій

Нехай відомі числові значення деякої величини , які відповідають числовим значенням величини /вузли інтерполювання /. Вважаючи функцією від , складемо таблицю із цих чисел:

Такі таблиці виникають на практиці в результаті дослідів, які проводяться над величиною ; але їх складають і для аналітично заданих функцій : таблиці квадратів та кубів чисел, таблиці логарифмів, таблиці тригонометричних функцій і т.п.

Часто виникає потреба в ущільненні таблиць, тобто в обчисленні проміжних значень , відсутніх в таблиці, задовольнившись при цьому лише наявним запасом табличних значень цієї величини . Також буває потрібним знайти на базі таблиці аналітичний вираз деякої функції , яка набувала б табличних значень за табличних значень . Звичайно, за беруть многочлен степеня , що має таку властивість (інтерполюючий многочлен).

Ознайомимося з деякими методами інтерполювання.

13.16.1. Інтерполяційна формула Лагранжа

Інтерполяційний многочлен запишемо у вигляді:

Для знаходження невизначених коефіцієнтів будемо покладати в цій рівності по черзі вимагаючи при цьому, щоб

Тоді одержуємо

Підставивши знайдені значення коефіцієнтів у вираз інтерполяційного многочлена, одержимо інтерполяційну формулу Лагранжа:

Поклавши в цю формулу , що дорівнює потрібному нам проміжному (нетабличному) значенню, одержуємо відповідне проміжне (нетабличне) значення . За табличних значень маємо відповідні табличні значення .

13.16.2. Інтерполяційна формула Ньютона

У випадку, коли вузли інтерполювання утворюють арифметичну прогресію (рівновіддалені)

( - крок інтерполювання), користуються інтерполяційною формулою, яка використовує скінченні різниці функції .

Скінченою різницею першого порядку величини називається різниця між двома послідовними її табличними значеннями:

Скінченою різницею другого порядку величини називається різниця між двома послідовними різницями першого порядку:

Аналогічно визначаються і скінченні різниці вищих порядків.

Із означень одержуємо:

Можна показати методом математичної індукції, що і в загальному випадку коефіцієнти виразу є біноміальними, а весь вираз нагадує розгорнутий -ий степінь суми. Тому

У цій формулі є номер табличного значення , або інакше - число кроків , які відділяють табличне значення від , тобто

Якщо будемо обчислювати нетабличне значення , що відповідає нетабличному значенню , і збережемо вигляд правої частини рівності для , то величина буде такою самою функцією від , якою функцією від раніше було ( за всіх табличних переходить в ).

Замінивши на , одержуємо інтерполяційну формулу Ньютона:

У розгорнутому вигляді є многочлен степеня відносно . За всіх табличних значень аргументу дорівнює відповідному табличному значенню функції , тобто .

Зауваження. Якщо функція лінійна або якщо розміщення на координатній площині точок наближено нагадує пряму лінію , то для одержання проміжних (нетабличних ) значень не має необхідності в інтерполяційних формулах, побудованих на базі усієї таблиці. Достатньо використати лише два ближчих вузли інтерполювання. Нехай і потрібно знайти , знаючи відповідні табличні значення та . Із рівняння прямої

одержимо

Цю формулу називають формулою лінійного інтерполювання. Нею часто користуються у випадках, коли вузли інтерполювання близькі один до одного.

Одержимо формули диференціювання функції, заданої таблицею, у випадку рівновіддалених вузлів інтерполювання.

Інтерполяційну формулу Ньютона запишемо так:

Оскільки

тощо,

то

тощо.

Для знаходження похідних функцій за табличних значень аргументу покладено і тому

тощо.

Ці формули поширюються на будь-яке табличне значення аргументу оскільки будь-яке значення з таблиці скінчених різниць можна вважати початковим, так що



Назад


Новые поступления

Украинский Зеленый Портал Рефератик создан с целью поуляризации украинской культуры и облегчения поиска учебных материалов для украинских школьников, а также студентов и аспирантов украинских ВУЗов. Все материалы, опубликованные на сайте взяты из открытых источников. Однако, следует помнить, что тексты, опубликованных работ в первую очередь принадлежат их авторам. Используя материалы, размещенные на сайте, пожалуйста, давайте ссылку на название публикации и ее автора.

281311062 © il.lusion,2007г.
Карта сайта