Доведення теорем Перрона-Фробеніуса та Маркова для матриць другого порядку - Математика - Скачать бесплатно
Відомо [[1]-[10]], яку важливу роль відіграють невід’ємні матриці в математичних моделях економіки, біології, теорії ймовірностей тощо.
Одними з основоположних фактів теорії цих матриць є теореми Перрона. Перрона-Фробеніуса та Маркова. Доведення цих теорем в загальному випадку потребує застосування теорем з таких неелментарних розділів математики, як теорія екстремумів функції багатьох змінних, жорданова нормальна форма тощо.
Мета роботи дати елементарне доведення вищезгаданих теорем Перрона, Перрона-Фробеніуса та Маркова для матриць другого проядку, яке цілком доступне і для школярів 9-го класу. Це дозволить, наприклад, на заняттях шкільних математичних гуртків чи факультативів розглянути та проаналізувати змістовні математично-економічні та теоретико-ймовірносні моделі (наприклад, модель Леонтьєва, випадкове блукання на відрізку) з повним доведенням всіх тверджень.
Необхідні відомості з теорії матриць.
Матриця розмірів m x n – це прямокутна таблиця чисел з m рядків та n стовпців. Позначається матриця так:
Квадратною матрицею n-го порядку зветься матриця розміром n x n. Важливою числовою характеристикою матриці є її визначник, який позначається detA. Для 2x2 матриці . Матриці А та В однакових розмірів називаються рівними, якщо іх відповідні елементи однакові, що записують так: А=В.
З матрицями можна здійснювати такі операції:
Множити на число
Приклад:
Додавати матриці однакових розмірів:
Приклад:
Множити матриці:
Приклад:
Взагалі, добутком матриці А розмірів m x r та матриці В розмірів r x n називається матриця С розмірів m x n, яка позначається АВ. Елемент cij цієї матриці – це сума попарних добутків елементів i-го рядка матриці А та елементів j-го рядка матриці В, а саме:
Якщо А та В квадратні матриці однакового порядку, то їх завжди можна перемножити.
Квадратна матриця порядку n, у якої єлементи , а інші елементи є нулями, називається одиничною матрицією порядку n. Однична матриця має таку властивість: АЕ=ЕА=А, де А – квадратна матриця порядку n, Е – одинична матриця такого ж порядку.
Нехай А – квадратна матриця, тоді матриця А-1 зветься оберненою до матриці А, якщо
Не в кожної матриці є обернена до неї, а саме А-1 існує тоді і тільки тоді, коли .
Беспосередньо можна первірити, що для
Визначення: Число l називається власним значенням n x n матриці А, якщо знайдется стовпчик такий, що АХ=lХ. При цьому Х називається власним вектором матриці А, що відповідає власному значенню l.
Якщо власний вектор Х відповідає власному значенню l, то сХ, де с - const, також власний вектор, що відповідає l. Власне значення є коренем характеристичного рівняння . Звідки видно, що не у кожної матриці є власні значення.
Визначення: Матриця А зветься додатною, якщо всі її елементи додатні, це позначається А>0.
Теорема Перрона: Нехай А - додатна матриця, тоді А має додатне власне значення r>0 таке, що:
1. r- відповідає єдиний (з точністю до множення на число) власний вектор.
2. інші власні значення по модулю < r.
3. власний вектор, що відповідає r, можна вибрати додатним (тобто з додатними елементами).
Доведення теореми для 2х2 матриць.
Нехай .
Тоді .
Напишемо характеристичне рівняння для матриці А:
.
Це квадратне рівніння з дискримінантом:
І тому
Тобто твердження теореми 1 і 2 доведені, якщо r=l1.
Знайдемо власний вектор , що відповідає власному значенню l1 з рівності
Тоді
, або
Враховуючи, що
перепишемо систему у вигляді:
Але і тому рівняння системи пропорціональні, а це означає, що одне з них можна відкинути.
Знайдемо x1 з першого рівняння системи
Щоб довести, що власний вектор можна вибрати додатним, достатньо перевірити, що ,тому що поклавши отримаємо x1>0.
Враховуючи, що b>0 треба довести, що ,
але це випливає з того, що , бо cb>0.
Таким чином третє твердження доведено, а з ним доведена теорема.
Визначення: Матриця А n-го порядку зветься нерозкладною, якщо однаковим переставленням рядків та стовпців її не можна привести до виду , де А1, А2 - квадратні матриці розмірів k x k та (n-k) x (n-k) відповідно. Для 2х2 матриць це означає, що та
Визначення: Матриця А зветься невід’ємною, якщо всі її елементи невід’ємні.
Зауваження: Фробеніус довів, що твердження теореми Перрона залишаються в силі для нерозкладних невід’ємних матриць. Це можна довести, просто повторивши наше доведення теореми Перрона для 2х2 матриць у випадку, коли один або обидва діагональних елемента дорівнюють нулю.
Визначення: Квадратна матриця називається стохастичною, якщо
1)
2)
Теорема Маркова: Нехай для стохастичної матриці P існує натуральне число k0 таке, що (тобто всі елементи додатні). Тоді
1. (існування границі матриці означає, що існує границя кожного її елементу)
2. Матриця - має однакові рядки.
3. Всі елементи цих рядків додатні.
Доведення теореми для 2х2 матриць.
Запишемо стохастичну матрицю у вигляді , де
Запишемо її характеристичне рівняння: ,
Це квадратне рівняння з дискрімінантом:
І тому
З урахуванням маємо , але якщо , то це значить, що p=q=1 або p=q=0, відкіля матриця P буде мати вигляд , або і тоді Pn містить нулі , що суперечить умові. Таким чином .
Беспосередньою перевіркою з урахуванням стохастичності встановлюємо, що власному значенню відповідає власний вектор , де x1=x2, тобто, наприклад власний вектор. Знайдемо власний вектор , що відповідає власному значенню .
За визначенням
Звідки
Згадуючи, що отримуємо
Очевидно, що рівняння системи пропорційні, тому одне з них можна відкинути. Знайдемо y1 з першого рівняння: або звідки , але , бо в протилежному випадку дана матриця мала б вигяд: , а тоді матриця мала б нульовий елемент , що суперечить умові. Тому можна записати, що
Доведемо тепер твердження 1 теореми.
Розглянемо матрицю S, стовпцями якої є власні вектори матриці P. Нам необхідно отримати зручну формулу для Pn.
Позначимо .
Оскілки , то існує S-1. Перепишемо рівняння та у матричній формі
або .
Відкіля і взагалі
Знайдемо границю Pn:
Твердження 1 теореми доведено.
Доведемо тепер, що рядки матриці однакові. Для цього обчиcлимо .
Оскільки , то Ми бачимо, що рядки матриці - однакові. Доведемо тепер, що їх елементи додатні. Для цього врахуємо отриману раніше залежність
Для того, щоб довести треба довести, що , треба довести, що та .
Маємо
,
, тому що p>0 і q >0
Теорема доказана.
Зауваження1 В процесі доведення ми вивели, що для 2х2 матриць
Зауваження2 Позначимо рядки граничної матриці . Тоді можна знайти з умови:
Доведення.
Оскільки
Зівдки
Або
Звідки
Зокрема, для 2х2 матриці
Умовою рядок визначається однозначно, що для 2х2 матриці можна перевірити.
В роботі дані для матриць другого порядку елементарні доведення таких фундаментальних теорем теорії невід’ємних матриць. як теореми Перрона, Перрона-Фробеніуса, Маркова.
У відомій нам літературі повне доведення цих теорем дається для загального випадку матриць n-го порядку з використанням неелемнтарних теорем і методів. А математичний апарат, який використовується в даній роботі, це: аналіз поведінки розв’язків квадратного рівняння та розв’язків системи двох лінійних рівнянь в залежності від коефіцієнтів.
Робота може бути використана при проведенні додаткових занять, присвячених розгляду вибраних неелементарних питань математики, за допомогою методів, які доступні школярам.
Список літератури:
С.А. Ашманов. Математические модели и метод в экономике.
МГУ. 1980
С.А. Ашманов. Введение в математическую экономику. “Наука”.
М., 1984
Р. Беллман. Введение в теорию матриц. “Наука”. М. 1969
Ф.Р. Гантмахер. Теория матриц. “Наука”. М.,1967
Б.В. Гнеденко. Курс теории вероятностей. “Наука”. М., 1988
С. Карлин. Математические метод в теории игр, программирования и экономике. “Мир”. М., 1964
Дж. Кемени, Дж. Скелл, Дж. Томпсон. Введение в конечную математику. Иностранная литература. М. 1963
П. Ланкастер. Теория матриц. “Наука”. М. 1978
Ю.М. Свирежев, Д.О.Логофет. Устойчивость биологических сообществ. “Наука”. М. 1978
В. Феллер. Введение в теорию вероятностей и ее приложение.
Т1. “Мир”.М. 1984
|