Я:
Результат
Архив

МЕТА - Украина. Рейтинг сайтов Webalta Уровень доверия



Союз образовательных сайтов
Главная / Рефераты / Математика / Еліпсоїд


Еліпсоїд - Математика - Скачать бесплатно


1) Еліпсоїдом називається поверхня, яка в деякій прямокутній системі координат визначається рівнянням.

Рівняння (1) називається канонічним рівнянням еліпсоїда. Дослідження форми еліпсоїда проведемо методом паралельних перерізів. Для цього розглянемо перерізи даного еліпсоїда площинами, паралельними площині Оху. Кожна з таких площин визначається рівнянням z=g, де h – довільне дійсне число, а лінія, яка утвориться і перерізі, визначається рівняннями

+= 1 - ; z=h.

Дослідимо рівняння (2) при різних значення h.

Якщо >c, c>0, то + <0 і рівняння (2) ніякої лінії не визначають, тобто точок перетину площини z=h з еліпсоїдом не існує.

Якщо h=+ c, то += 0 і лінія (2) вироджується в точки (0; 0; с) і (0; 0; - с), тобто площини z=c і z=-c доторкаються до еліпсоїда.

Якщо >c, c>0, то += 1, де а1=а, b1=b, тобто площина z=h перетинає еліпсоїд по еліпсу з півосями а1 і b1. При зменшенні h значеннz а1 і b1 збільшуються і досягають своїх найбільших значень при h=0, тобто в перерізі еліпсоїда площиною Оху матимемо найбільший еліпс з півосями a1= а, b1 = b.

Аналогічні результати дістанемо, якщо розглядатимемо перерізи еліпсоїда площинами х=h і у=h.

Таким чином, розглянуті перерізи дають змогу зобразити еліпсоїд як замкнуту овальну поверхню. Величина а, b, с називаються півосями еліпсоїда. Якщо будь-які дві півосі рівні між собою, то триосний еліпсоїд перетворюється в еліпсоїд обертання, а якщо всі три півосі рівні між собою, - у сферу.

Отже даний еліпсоїд має півосі: а= 2,b=3? c=; його центр знаходиться в точці 0(1; -2; 3).

2) Одно порожнинний гіперболоїд

Однопорожнинним гіперболоїдом називається поверхня, яка в деякій прямокутній системі координат визначається рівнянням

+= 1 - =1.

Рівняння (3) називається канонічним рівнянням однопорожнинного гіперболоїда.

Досліджують рівняння (3), як і в попередньому пункті, методом паралельних перерізів. Перетинаючи одно порожнинний гіперболоїд площинами, паралельними площині Оху, дістанемо в перерізі еліпси. Якщо поверхню (3) перетинати площинами х=h або у=h, то в перерізі дістанемо гіперболи.

Детальний аналіз цих перерізів показує, що однопорожнинний гіперболоїд має форму нескінченної трубки, яка необмежено розширюється в обидва боки від найменшого еліпса, по якому однопроджнинний гіперболоїд перетинає площину Оху.

Двопорожнний гіперболоїд

Двопорожнинним гіперболоїдом називаються поверхня, яка в деякій прямокутній системі координат визначається рівнянням

+= 1 - ; = - 1.

Рівняння (4) називається канонічним рівнянням двопорожнинного гіперболоїда.

Метод паралельних перерізів дає змогу зобразити двопорожнинний гіперболоїд як поверхню, що складається з двох окремих порожнин (звідси назва двопорожннний), кожна з яких перетинає вісь Оz і має форму опуклої нескінченної часі.

Еліптичний параболоїд

Еліптичним параболоїдом називається поверхня, яка в деякій прямокутній системі координат визначається рівнянням

+= z ,

що є канонічним рівнянням еліптичного параболоїда. Він має форму нескінченної опуклої чаші. Лініями паралельних перерізів еліптичного параболоїда є параболи або еліпси.

Гіперболічний параболоїд

Гіперболічний параболоїдом називається поверхня, яка в деякій прямокутній системі координат визначається рівнянням

+= z.

що є канонічним рівнянням гіперболічного параболоїда. Ця поверхня має форму сідла.

Лініями паралельних перерізів гіперболічного параболоїда є гіперболи або параболи.



Назад


Новые поступления

Украинский Зеленый Портал Рефератик создан с целью поуляризации украинской культуры и облегчения поиска учебных материалов для украинских школьников, а также студентов и аспирантов украинских ВУЗов. Все материалы, опубликованные на сайте взяты из открытых источников. Однако, следует помнить, что тексты, опубликованных работ в первую очередь принадлежат их авторам. Используя материалы, размещенные на сайте, пожалуйста, давайте ссылку на название публикации и ее автора.

281311062 © il.lusion,2007г.
Карта сайта