Порівняння функцій та їх застосування - Математика - Скачать бесплатно
ЗМІСТ
Вступ 3
1. ПОРІВНЯННЯ ФУНКЦІЙ. ОБЧИСЛЕННЯ ГРАНИЦЬ 4
§1. ДЕЯКІ ЧУДОВІ ГРАНИЦІ 4
§2. ПОРІВНЯННЯ ФУНКЦІЙ 9
§3. ЕКВІВАЛЕНТНІ ФУНКЦІЇ 18
§4. МЕТОД ВИДІЛЕННЯ ГОЛОВНОЇ ЧАСТИНИ ФУНКЦІЇ І ЙОГО ЗАСТОСУВАННЯ ДО ОБЧИСЛЕННЯ ГРАНИЦЬ. 21
ВИСНОВОК 26
Вступ
Нехай дано множину Е дійсних чисел. Якщо кожному числу за певним законом поставлено у відповідність одне дійсне число y, то кажуть, що на множині Е задана (визначена) функція, і записують . При цьому x називають незалежною змінною, або аргументом, а y – залежною змінною, або функцією.
В цій роботі передбачається розглянути: О-символіку Ландау для функцій однієї змінної, заданої в проколотому околі довести ряд тверджень про арифметичні дії над О-символами та еквівалентними функціями; деякі важливі границі; способи порівняння функцій та ін.
Розглянути метод виділення головної частини функції в застосуванні до обчислення до границь. Теоретичні дослідження проілюструвати розв’язанням вправ
ПОРІВНЯННЯ ФУНКЦІЙ. ОБЧИСЛЕННЯ ГРАНИЦЬ
ДЕЯКІ ЧУДОВІ ГРАНИЦІ
В цьому пункті обчислюються границі, які неодноразово зустрічатимуться надалі.
Лема 1.
(1.1)
Доведення. Розглянемо круг радіусом R з центром в точці О. Нехай радіус 0В утворює кут , з радіусом ОА. З’єднаємо точки А і В відрізком і проведемо з точки А перпендикуляр до радіуса ОА до перетину в точці С з продовженням радіуса 0В (мал. 28). Тоді площа трикутника АОВ рівна , площа сектора AОB рівна а площа трикутника АОС рівна Трикутник АОВ є частиною сектора АОВ, який у свою чергу є частиною трикутника АОС; тому
звідки
отже,
або, замінюючи величини їм оберними
(1.2)
Зауважимо, що через парність функцій і нерівність (1.2) справедлива і при . Оскільки функція неперервна і , то з (1.2) при слідує рівність (1.1).
Наслідок 1.
(1.3)
Дійсно,
Наслідок 2.
(1.4)
Функція строго монотонна і неперервна на відрізку , тому обернена функція також строго монотонна і неперервна на відрізкуе . Оскільки , то записи і еквівалентні. Щоб обчислити границю (1.4), застосуємо правило заміни змінної для границю неперервних функцій. Поклавши , маємо
Наслідок 3.
(1.5)
Ця рівність випливає аналогічно попередній з (1.3).
Лема 2.
(1.6)
Рівність
(1.7)
де Звідси випливає, що для будь-якої послідовності натуральних чисел, такї, що
(1.8)
маємо
(1.9)
Дійсно, нехай задано ; з (1.7) випливає, що знайдеться таке що при
(1.10)
а з умови (1.8) випливає, що існує таке що при тому в силу (1.10)
при що і означає виконання рівності (1.9).
Нехай тепер послідовність така, що
тобто
(1.11)
Покажемо, що При цьому без обмеження спільності можна вважати, що Для довільного знайдеться таке натуральне що і, отже, причому в силу Тому маємо:
(1.12)
Наголошуючи, що в силу (1,9)
і
і переходячи до границю в нерівності (1.12) при , отримаємо
Оскільки —первісна послідовність, яка задовільняє умовам (1.11), то тим самим доведено, що
(1.13)
Нехай тепер послідовність така, що.
тобто,
(1.14)
Покладемо , тоді і при чому без обмеження спільності можна вважати, що Тоді
,
де
і
і через вже доведену рівність (1.13)
Але була довільною послідовністю, що задовольняє умовам (1.14), тому
(1.15)
Таким чином, функція має в точці О границі з ліва і права, рівні одному і тому ж числу е. Тому існує і її двостороння границя при , яка також рівна е.
Наслідок 1.
(1.16)
і, зокрема, при
Дійсно, використовуючи неперервність логарифмічної функції, неперервність суперпозиції функцій і рівність (1.6), отримаємо:
Наслідок 2.
(1.17)
Зокрема, якщо то
(1.І8)
Функція строго монотонна і неперервна на всій числовій осі, тому зворотна функція також строго монотонна і неперервна при . Оскільки при маємо також і , то позначення і еквівалентні. Застосуємо для обчислення границі (1.17) правило заміни змінної.
Поклавши , отримаємо
ПОРІВНЯННЯ ФУНКЦІЙ
Всі, що розглядаються в цьому пункті, функції визначені в деякому фіксованому проколотому околі точки розширеної числової прямої: при чому цей окіл може бути і одностороній. Тому кожного разу не буде сказано, що .
Як ми вже знаємо, сума, різниця і добуток нескінченно малих функцій є також нескінченно малими функціями; цього не можна, взагалі кажучи, сказати про їх подільність: ділення однієї нескінченно малої на іншу може призвести до різноманітних випадків, як це показують нижче проведені приклади нескінченно малих при функцій і .
Нехай, наприклад і тоді
Якщо ж то а якщо , то границя не існує.
Означення 1. Якщо для двох функцій f і g існують такі проколені околи і сталі , що для всіх виконується нерівність то функція f називається обмеженою порівнянно з функцією g на і позначається:
(читається: є велике від при , прямучому до ).
Наголосимо, що запис має тут інше, ніж звичайно, значення: він тільки вказує на те, що дана властивість має місце лише в деякому околі точки ні про яку межу тут мови немає.
Лема 3. Якщо і існує скінчена границя то
Доведення. З існування скінченої границі
,
слідує існування такого проколотого околу точки що функція на ній обмежена, тобто є така стала , що для всіх виконується нерівність а отже, і нерівність Це і означає, що , .
Приклади. при , або при ; при , або при . Запис при , означає, що функція обмежена в деякому околі точки наприклад при , або , і, значить, функція обмежена в околі точки
Означення 2. Якщо функції і такі, що і при , то вони називаються функціями одного порядку при , це записується у вигляді :
Це поняття найбільш змістовне у тому випадку, коли функції f і g є або нескінченно малими, або нескінченно великими при . Наприклад, функції і є при нескінченно малими одного порядку, бо
Лема 4. Якщо існує скінчена межа , то
Доведення. Покладемо тоді і Отже з леми 3, при .
Оскільки існує такий проколений окіл точки ,що для всіх маємо , а отже, і Для покладемо тоді і . Тому, згідно леми 3
Наприклад візьмемо функцію і . Маємо (див. (1.1)), тому згідно доведеному, функції і одного порядку при .
Означення 3. Функціїи і називаються эквівалентними при , якщо в деякому проколеному околі точки визначена така функція , що
(1.20)
і
(1.21)
Відзначимо, що через властивість (1.21) знайдеться проколений окіл точки , у якій . Вважаючи бачимо, що умови (1.20) і (1.21) для вказаного проколеного околу рівносильні умовам
тобто як говорять, еквівалентність двох функцій має властивість симетричності.
Функції і , еквівалентні при , називаються також асимптотично рівними при Асимптотична рівність (еквівалентність) функцій позначається символом ~:
(1.22)
З сказаного вище слідує, що якщо при , то і при
Приклади. 1. при , Дійсно, припустивши , отримаємо:
і
2. ~ при . Дійсно, якщо , то
і
Якщо в деякому проколеному околі точки справедливі нерівності то умови (1.20) і (1.21) еквівалентні співвідношенню
а, отже, й умові
Щоб в цьому переконатися, достатньо покласти тоді, очевидно, для функції виконуються умови (1.20) і (1.21).
Якщо
f~g і g~f при (1.23)
то
f~h при (1.24)
Дійсно, з умов (1.23) виходить, що в деякому проколеному околі точки
де і, отже
,
де , тобто виконується асимптотична рівність (1.24).
З результатів пункту 1.1 слідує, що при справедлива наступна еквівалентність нескінченно малих:
З цієї еквівалентності випливають і більш загальні співвідношення, які сформулюємо у вигляді окремої леми.
Лема 4. Якщо функція така, що
(1.25)
то при ,
(1.26)
Доведення. Покажемо, наприклад, що
(1.27)
Нехай функція визначена в деякому проколеному околі точки Покладемо (вважаючи що належить цоьму околі)
(1.28)
Покажемо, що
(1.29)
Нехай задано Оскільки
(тут u — незалежна змінна), існує таке число що при виконується нерівність
Для вказаного в силу (1.25) знайдеться таке число , що для всіх , задовольняючих умову , виконується нерівністьо Отже, якщо і , то
Інакше кажучи, якщо і , то
(1.30)
Якщо ж і , то згідно (1.28) маємо і, отже, нерівність (1.30) очевидно також виконується.
Рівність (1.29) доведена, а оскільки з (1.28) випливає, що для всіх , то доведена справедливість асимптотичної рівності (1.27). Аналогічно доводиться і решта асимптотичні формули (1.26).
Означення 4. Якщо в деякому проколеному околі точки де , то функція називається нескінченно малою в порівнянні з функцією при , пишеться , (читається: є о мале від при , прямучому до ).
Через це означення запис означає просто, що функція є нескінченно малою при ,
Якщо при , та умову
можна переписати у вигляді
Таким чином, під при розуміється будь-яка функція така, що
У випадку, коли нескінченно мала при то говорять, що при є нескінченно мала більш високого порядку, ніж
Наприклад, при , або
Так само і при
Відзначимо, що якщо то і при Дійсно, нехай , де . Тоді функція обмежена в деякому проколеному околі точки точки і, значить, в вказаному проколеному околі, а це означає, що , .
Збираючи разом введені в цьому пункті основні поняття, отримаємо: нехай в деякому проколеному околі Ů=Ů(x) точки
тоді
якщо функція обмежена на , то
якщо '
якщо
При використовуванні рівності з символами О і о слідує мати на увазі, що вони не є рівністю в звичайному значенні цього слова. Так, якщо
то було б помилкою зробити звідси висновок, що як це було б у разі звичайної рівності. Наприклад, і при , але . Аналогічно, якщо
при
то було б помилкою зробити висновок, що
Річ у тому, що один і той же символ або може позначати різні конкретні функції. Ця обставина зв'язана з тим, що при визначенні символів і ми по суті ввели цілі класи функцій, що володіють певними властивостями (клас функцій, обмежених в деякому околі точки в порівнянні з функцією і клас функцій, нескінченно малих в порівнянні з f(x) при ) і було б правильнішим писати не і , а відповідно і о . Проте це призвело б до істотного ускладнення обчислень з формулами, в яких зустрічаються символи О і о. Тому ми збережемо колишній запис і , але завжди читатимемо цю рівність, відповідно до приведених вище визначень, тільки в одну сторону: зліва направо (якщо, звичайно, не обумовлено що-небудь інше). Наприклад, запис означає, що функція є нескінченно малою в порівнянні з функцією f при але зовсім не те, що всяка нескінченно мала по порівнянню з f функція рівна .
Як приклад на поводження з цими символами доведемо рівність
(1.31)
де с - стала.
Згідно сказаному, треба показати, що якщо , то . Дійсно, якщо , то , де0. Покладемо тоді де, очевидно і, значить, .
На закінчення відзначимо, що сказане про використовування символів О і о не виключає, звичайно, того, що окремі формули з цими символами можуть виявитися справедливими не тільки при читанні зліва направо, але і справа наліво; так, формула (1.31) при вірна і при читанні справа наліво.
Приклади.
1.;
тому
2.
3., бо
4.Так як |1/x2| £ |1/x| при |x| ³ 1, то 1/x2 = O(1/x) при x ® ¥;
5.1/x = O(1/x2) при x® 0 так как |1/x|£ 1/x2 при |x|£ 1.
6.Функції f(x) = x(2+sin 1/x) g(x) = x x ® 0 являються нескінчено малими одного порядку при x® a , так як
f/g = (x(2+sin 1/x))/x = 2+sin 1/x = |2+sin 1/x| £ 3 Þ f=O(g), g/f = 1/|2+sin 1/x| £ 1 Þ g=O(f).
7. x2 = o(x) при x ® 0, так як limx ® 0x2/x = limx ® 0x = 0;
8.1/x2 = o(1/x) при x ® + ¥ так як limx ® ¥x/x2 = limx ® ¥1/x = 0
9.Знайти границю
Розв’язування. Використовуючи асимптотическое равенство (3) и асимптотическое равенство (1), а также учитывая, что x2 = o(x) при x® 0 (см. пример 15) и f=o(x2) является функцией o(x) при x® 0, найдем
ЕКВІВАЛЕНТНІ ФУНКЦІЇ
Якщо функція замінюється на де якому кроці через , то різницяь називається абсолютною похибкою, а відношення — відносною похибкою зробленої заміни. Якщо вивчається поведінка функції при то часто доцільно замінити її функцією такої, що 1) функція в певному значенні більш проста, ніж функція ; 2) абсолютна похибка прямує до нуля при
В цьому випадку говорять, що наближає функцію поблизу точки . Такою властивістю володіють наприклад, всі нескінченно малі при функції f і g. Нижче показано, що серед них лише ті, які еквівалентні між собою:
володіють тією властивістю, що не тільки абсолютна похибка , але і відносна прямує до нуля при
В цьому значенні функції, еквівалентні заданій, наближають її краще, ніж інші функції навіть того ж порядку, що і дана при
Наприклад, функції є нескінченно малими при так само як і а тому абсолютні похибки при заміні sin кожна з них прямує до нуля при
Але лише одна зі всіх перерахованих функцій, а саме: має ту властивість, що відносна похибка при заміні цією функцією прямуватиме до нуля при
Прямування відносної похибки до нуля при можна записати, використовуючи символ “o мале»:
Сформулюємо сказану характеристичну властивість еквівалентних функцій у вигляді теореми.
Теорема 1. Для того, щоб функції і були еквівалентними при необхідно і достатньо, щоб при виконувалася умова
(1.32)
Доведення необхідності. Нехай при тобто
де . Тоді
де при , тобто маємо (1.32).
Доведення достатності. Нехай виконується умова (1.32), тобто
де . Тоді
де при тобто при
Отже, ми показали, що функції і еквівалентні при тоді і тільки тоді, коли відносна похідна (або прямує до нуля при )
Наслідок. Нехай де с - стала. Тоді f~cg і g=cf+o(f) при
Доведення. Якщо , то , і значить при . Звідси, з теореми 1 маємо а значить (див. кінець п. 1.2) .
Теорема 2. Нехай ~ і ~ при Тоді якщо існує
(1.33)
то існує і , причому
(1.34)
Доведення. Умова при означає, що
де , а умова при -що , де . Крім того, оскільки існує границя (1.33), функція визначена в деякому проколеному околі точки і, отже, всюди в цьому околі виконується нерівність . Оскільки і, очевидно, в деякому проколеному околі точки , то і функція володіє тією ж властивістю. Тому функція визначена в деякому проколеному околі точки .
Тепер маємо:
Оскільки обидві частини рівності (1.34) рівноправні, то з доведеної теореми виходить, що границя, що стоїть в лівій частині, існує тоді і тільки тоді, коли існує границя в правій частині, причому у разі їх існування вони співпадають. Це робить дуже зручним застосування теореми 2 на практиці: її можна використовувати для обчислення меж, не знаючи наперед, існує чи ні дана межа.
МЕТОД ВИДІЛЕННЯ ГОЛОВНОЇ ЧАСТИНИ ФУНКЦІЇ І ЙОГО ЗАСТОСУВАННЯ ДО ОБЧИСЛЕННЯ ГРАНИЦЬ.
Нехай -функції, визначені в деякій проколеному околі точки . Якщо функція представлена у вигляді
то функція називається головною частиною функції при прамуючому до
Приклади. 1. Головна частина функції , при рівна , бо
2. Якщо то функція є головною частиною многочлена при , бо
Якщо задана функція , то її головна частина не визначається однозначно: будь-яка функція , еквівалентна , є її головною частиною. Наприклад, нехай . Оскільки, з одного боку при , а з другого боку то . В першому випадку головною частиною можна вважати , в другому . Проте, якщо задається певним чином головної частини, то при його вигідному виборі можна добитися того, що головна частина вказаного вигляду буде визначена однозначно.
Зокрема, справедлива наступна лема.
Лема 5. Якщо функція володіє при , головною частиною вигляду , де А і k - сталі, то серед всіх головних частин такого вигляду вона визначається єдиним чином.
Дійсно, нехай, при ,
і
Тоді ; тому , тобто
що справедливе лише у випадку і .
Поняття головної частини функції корисно при вивченні нескінченно малих і нескінченно великих і з успіхом використовується при розв’язанні різноманітних задач математичного аналізу. Досить часто вдається нескінченно малу складного аналітичного вигляду замінити, в околі даної точки, з точністю до нескінченно малих більш високого порядку, більш простою функцією. Наприклад, якщо вдається представити у вигляді , то це означає, що з точністю до нескінченно малих більш високого порядку, ніж , нескінченно мала поводиться в околі точки , як степенева функція .
Покажемо на прикладах, як метод виділення головної частини нескінченно малих застосовується до обчислення границь функцій. При цьому широко використовуватимемо отримані нами співвідношення еквівалентності (1.26).
Нехай вимагається знайти межу (а значить, і довести, що він існує))
Використовуючи доведену вище (див. (1.26)) еквівалентність ~ при , маємо при , тому (див. теорему 1)) . Проте і , а отже
Далі , унаслідок чого
Очевидно також, що
З асимптотичої рівності , отримаємо
з
а з
Всі ці співвідношення виконуються при . Тепер маємо
тому
Але при , і, значить, по теоремі 2,
Таким чином, шукана границя існує і рівний 2.
При обчисленні границя функцій за допомогою методу виділення головної частини слід мати на увазі, що у випадках, не розглянутих в п. 1.3, взагалі кажучи, не можна нескінченно малі замінювати еквівалентними їм. Так, наприклад, при відшуканні границь вираження
було б помилкою замінити функцію эквивалентній їй при функцією .
Для відшукання границь виразів вигляду цілообразно границю їх логарифмів. Розглянемо подібний приклад. Знайдемо границю . Зауважуючи, що
(1.35)
бачимо, що слід обчислити границю
Оскільки , то звідси, згідно теоремі 2 цього параграфа, маємо
але , а тому
таким чином,
Через неперервність показникової функції з (1.35) маємо
Спосіб обчислення границь за допомогою виділення головної частини функції є дуже зручним, простим і разом з тим вельми загальним методом. Деяке утруднення в його застосуванні зв'язано поки з тим, що ще немає достатньо загального способу виділення головної частини функції.
Приклади:
1.
2.
3.
4.
|