Я:
Результат
Архив

МЕТА - Украина. Рейтинг сайтов Webalta Уровень доверия



Союз образовательных сайтов
Главная / Предметы / Экология / Очистка газовых выбросов фильтрами


Очистка газовых выбросов фильтрами - Экология - Скачать бесплатно


Министерство образования РФ

                     Вятский государственный университет



                Кафедра промышленной экологии и безопасности



                                   Реферат


                          по дисциплине «Экология»



                          ОЧИСТКА  ГАЗОВЫХ  ВЫБРОСОВ


                                  ФИЛЬТРАМИ



Выполнил студент группы


Проверила



                                 Киров 2003



                                 Содержание


Введение    3
  1 Классификация газообразных промышленных выбросов     4
  2 Фильтрация    7
  3 Очистка газов в фильтрах 8
  3.1 Тканевые фильтры 9
  3.2 Волокнистые фильтры    12
  3.3 Зернистые фильтры.     15
  3.4 Очистка газов в электрофильтрах   16
  Заключение      20
  Библиографический список   21


    Введение


    До определенного этапа развития  человеческого  общества,  в  частности
индустрии,   в   природе   существовало   экологическое   равновесие,   т.е.
деятельность человека не нарушала основных  природных  процессов  или  очень
незначительно  влияла  на  них.  Экологическое  равновесие   в   природе   с
сохранением естественных экологических систем существовало  миллионы  лет  и
после появления  человека  на  Земле.  Так  продолжалось  до  конца  XIX  в.
Двадцатый век вошел в историю как  век  небывалого  технического  прогресса,
бурного развития науки,  промышленности,  энергетики,  сельского  хозяйства.
Одновременно как сопровождающий фактор росло  и  продолжает  расти   вредное
воздействие индустриальной деятельности  человека  на  окружающую  среду.  В
результате  происходит  в  значительной   мере   непредсказуемое   изменение
экосистем и всего облика планеты Земля.
    В настоящее время с ростом и бурным  развитием  промышленности  большое
внимание  уделяется  ее  экологической  обоснованности,  а  именно  проблеме
очистке и утилизации отходов. В  данном  реферате  рассматривается  один  из
видов  отходов  промышленности  –   газовые   выбросы   предприятий   и   их
механическая очистка фильтрами.

    1 Классификация газообразных промышленных выбросов


    В газообразных промышленных выбросах вредные примеси можно разделить на
две группы:
         а) взвешенные частицы  (аэрозоли)  твердых  веществ  —  пыль,  дым;
жидкостей — туман;
         б) газообразные и парообразные вещества.
      К аэрозолям относятся взвешенные  твердые  частицы  неорганического  и
органического происхождения, а также взвешенные частицы  жидкости  (тумана).
Пыль – это дисперсная  малоустойчивая  система,  содержащая  больше  крупных
частиц, чем дымы и туманы. Счетная концентрация (число частиц в 1 см3)  мала
по сравнению  с  дымами  и  туманами.  Неорганическая  пыль  в  промышленных
газовых  выбросах  образуется  при  горных  разработках,  переработке   руд,
металлов, минеральных солей и удобрений, строительных  материалов,  карбидов
и   других   неорганических   веществ.   Промышленная   пыль   органического
происхождения – это, например,  угольная,  древесная,  торфяная,  сланцевая,
сажа и др. К  дымам  относятся  аэродисперсные  системы  с  малой  скоростью
осаждения под действием силы тяжести. Дымы образуются при  сжигании  топлива
и его деструктивной переработке, а также в  результате  химических  реакций,
например при взаимодействии аммиака и  хлороводорода,  при  окислении  паров
металлов в электрической дуге и т.д. Размеры частиц в  дымах  много  меньше,
чем в пыли и туманах, и составляют от 5 мкм до субмикронных  размеров,  т.е.
менее  0,1  мкм.  Туманы  состоят  из  капелек  жидкости,  образующихся  при
конденсации паров или распылении жидкости. В  промышленных  выхлопах  туманы
образуются главным образом  из  кислоты:  серной,  фосфорной  и  др.  Вторая
группа – газообразные и парообразные вещества, содержащиеся  в  промышленных
газовых выхлопах, гораздо более  многочисленна.  К  ней  относятся  кислоты,
галогены и  галогенопроизводные,  газообразные  оксиды,  альдегиды,  кетоны,
спирты,  углеводороды,  амины,  нитросоединения,  пары  металлов,  пиридины,
меркаптаны и многие другие компоненты газообразных промышленных отходов.
      В настоящее время, когда безотходная технология  находится  в  периоде
становления и полностью безотходных предприятий еще  нет,  основной  задачей
газоочистки  служит  доведение  содержания  токсичных  примесей  в   газовых
примесях  до  предельно   допустимых   концентраций   (ПДК),   установленных
санитарными нормами.
        В  таблице  1  выборочно   приведены   ПДК   некоторых   атмосферных
загрязнителей./1,с.342/



Таблица 1 – ПДК некоторых атмосферных загрязнителей.
|ВЕЩЕСТВА                              |ПДК, мг/м3                           |
|                                      |максимальная разовая                 |
|                                      |среднесуточная                       |
|Аммиак                                |0,2                |0,2              |
|Ацетальдегид                          |0,1                |0,1              |
|Ацетон                                |0,35               |0,35             |
|Бензол                                |1,5                |1,5              |
|Гексахлоран                           |0,03               |0,03             |
|Ксилолы                               |0,2                |0,2              |
|Марганец и его соединения             |—                  |0,01             |
|Мышьяк и его соединения               |—                  |0,003            |
|Метанол                               |1,0                |0,5              |
|Нитробензол                           |0,008              |0,008            |
|Оксид углерода (СО)                   |3,0                |1,0              |
|Оксиды азота (в пересчете на N2O5)    |0,085              |0,085            |
|Оксиды фосфора (в пересчете на P2O5)  |0,15               |0,05             |
|Ртуть                                 |0,0003             |0,0003           |
|Свинец                                |—                  |0,0007           |
|Сероводород                           |0,008              |0,008            |
|Сероуглерод                           |0,03               |0,005            |
|Серы диоксид SO2                      |0,5                |0,05             |
|Фенол                                 |0,01               |0,01             |
|Формальдегид                          |0,035              |0,012            |
|Фтороводород                          |0,05               |0,005            |
|Хлор                                  |0,1                |0,03             |
|Хлороводород                          |0,2                |0,2              |
|Тетрахлорид углерода                  |4,0                |2,0              |

      При содержании в воздухе нескольких токсичных соединений их  суммарная
концентрация не должна превышать 1, то есть

                  с1/ПДК1 + с2/ПДК2 + ... + сn/ПДКn = 1,                 (1)

  где c1, с2, …, сn – фактическая  концентрация  загрязнителей  в  воздухе,
мг/м3;
      ПДК1, ПДК2, …, ПДКn – предельно допустимая концентрация, мг/м3.
      При   невозможности   достигнуть   ПДК   очисткой   иногда   применяют
многократное разбавление токсичных веществ или выброс  газов  через  высокие
дымовые  трубы  для  рассеивания  примесей  в   верхних   слоях   атмосферы.
Теоретическое определение концентрации примесей в нижних слоях  атмосферы  в
зависимости  от  высоты  трубы  и  других  факторов   связано   с   законами
турбулентной диффузии в атмосфере и пока разработано  не  полностью.  Высоту
трубы, необходимую, чтобы обеспечить ПДК токсичных веществ  в  нижних  слоях
атмосферы,  на  уровне  дыхания,  определяют   по   приближенным   формулам,
например:

                                         [pic],                          (2)
  где ПДВ – предельно допустимый выброс вредных примесей в атмосферу,
обеспечивающий концентрацию этих веществ в приземном слое воздуха не выше
ПДК, г/с;
      Н — высота трубы, м; V – объем газового выброса, м3/с;
      (t  –разность  между  температурами  газового  выброса  и  окружающего
воздуха, °С;
      A – коэффициент, определяющий условия вертикального и  горизонтального
рассеивания вредных веществ в воздухе, с2/3- (ОС)1/3 (например,  для  района
Урала А = 160);
      F— безразмерный коэффициент, учитывающий скорость седиментации вредных
веществ в атмосфере (для Cl2, HCl, HF  F = 1);
      т — коэффициент, учитывающий условия выхода газа из устья  трубы,  его
определяют графически или приближенно по формуле

                                         [pic],                          (3)

  где [pic] – средняя скорость на выходе из трубы, м/с;
      DT — Диаметр трубы, м.
      Метод достижения ПДК с помощью «высоких труб» служит лишь паллиативом,
так как не предохраняет атмосферу, а лишь переносит  загрязнения  из  одного
района в другие.
      В соответствии с характером вредных примесей различают методы  очистки
газов от аэрозолей и от газообразных и парообразных  примесей.  Все  способы
очистки газов определяются в первую  очередь  физико-химическими  свойствами
примесей, их агрегатным состоянием,  дисперсностью,  химическим  составом  и
др. Разнообразие вредных примесей в промышленных газовых  выбросах  приводит
к большому разнообразию методов очистки, применяемых реакторов и  химических
реагентов.
2 Фильтрация

      Основана на прохождении очищаемого газа  через  различные  фильтрующие
ткани (хлопок, шерсть, химические волокна, стекловолокно и  др.)  или  через
другие   фильтрующие   материалы   (керамика,   металлокерамика,    пористые
перегородки из пластмассы и др.). Наиболее часто  для  фильтрации  применяют
специально изготовленные волокнистые материалы — стекловолокно,  шерсть  или
хлопок с асбестом, асбоцеллюлозу. В зависимости  от  фильтрующего  материала
различают  тканевые  фильтры  (в  том  числе  рукавные),   волокнистые,   из
зернистых материалов (керамика, металлокерамика, пористые пластмассы).
      Тканевые фильтры, чаще всего  рукавные,  применяются  при  температуре
очищаемого газа  не  выше  60-65°С.  В  зависимости  от  гранулометрического
состава пыли и начальной запыленности степень очистки (КПД)  составляет  85-
99%. Гидравлическое сопротивление фильтра (Р около 1000 Па;  расход  энергии
~ 1 кВт*ч  на  1000  м3  очищаемого  газа.  Для  непрерывной  очистки  ткани
продувают воздушными струями, которые создаются  различными  устройствами  –
соплами,  расположенными  против  каждого  рукава,   движущимися   наружными
продувочными кольцами  и  др.  Сейчас  применяют  автоматическое  управление
рукавными фильтрами с продувкой их импульсами сжатого воздуха.
      Волокнистые фильтры, имеющие  поры,  равномерно  распределенные  между
тонкими волокнами, работают с высокой эффективностью; степень  очистки  (  =
99,5(99,9 % при скорости фильтруемого газа 0,15-1,0 м/с и (Р=500(1000 Па.
      На  фильтрах  из   стекловолокнистых   материалов   возможна   очистка
агрессивных газов при температуре до 275°С. Для  тонкой  очистки  газов  при
повышенных температурах  применяют  фильтры  из  керамики,  тонковолокнистой
ваты из нержавеющей стали, обладающие высокой прочностью и  устойчивостью  к
переменным нагрузкам; однако их гидравлическое сопротивление велико  –  1000
Па.
      Фильтрация – весьма распространенный прием тонкой  очистки  газов.  Ее
преимущества – сравнительная низкая стоимость оборудования  (за  исключением
металлокерамических  фильтров)  и  высокая  эффективность  тонкой   очистки.
Недостатки  фильтрации  высокое  гидравлическое  сопротивление   и   быстрое
забивание фильтрующего материала пылью.



      3 Очистка газов в фильтрах


      В основе работы пористых фильтров всех видов лежит процесс фильтрации
газа через пористую перегородку, в ходе которого твердые частицы
задерживаются, а газ полностью проходит сквозь нее.

                                    [pic]


      Рисунок 1 - Динамический пылеуловитель: 1 ( «улитка»; 2 ( циклон;
                           3 ( пылесборный бункер.

      Фильтрующие перегородки весьма разнообразны по своей структуре,  но  в
основном они состоят  из  волокнистых  или  зернистых  элементов  и  условно
подразделяются на следующие типы:
       гибкие пористые перегородки (  тканевые  материалы    из   природных,
синтетических  или  минеральных   волокон:   нетканыеволокнистые   материалы
(войлоки, клены   и иглопробивные  материалы,  бумага,  картон,  волокнистые
маты); ячеистые листы  (губчатая    резина,  пенополиуретан,      мембранные
фильтры);
       полужесткие пористые  перегородки  —  слои       волокон,    стружка,
вязаные  сетки, положенные     на  опорных  устройствах  или  зажатые  между
ними;
      жесткие пористые перегородки —    зернистые   материалы    (  пористая
керамика или  пластмасса,  спеченные  или  спрессованные  порошки  металлов,
пористые стекла,    углеграфитовые материалы и др.);  волокнистые  материалы
(сформированные слои из стеклянных и металлических  волокон);  металлические
сетки и перфорированные листы.

      В процессе очистки запыленного газа частицы  приближаются  к  волокнам
или к поверхности зерен материала, сталкиваются с ними и осаждаются  главным
образом в результате действия сил диффузии,  инерции  и  электростатического
притяжения.
       Проходя через фильтрующую перегородку, поток  разделяется  на  тонкие
непрерывно  разъединяющиеся  и   смыкающиеся   струйки.   Частицы,   обладая
инерцией, стремятся перемещаться  прямолинейно,  сталкиваются  с  волокнами,
зернами и удерживаются ими. Такой механизм характерен  для  захвата  крупных
частиц  и  проявляется  сильнее  при   увеличении   скорости   фильтрования.
Электростатический механизм захвата пылинок проявляется в том случае,  когда
волокна несут заряды или поляризованы внешним электрическим полем.
      В фильтрах уловленные частицы  накапливаются  в  порах  или  образуют
пылевой слой на поверхности перегородки, и таким  образом  сами  становятся
для вновь поступающих частиц частью фильтрующей среды. По  мере  накопления
пыли  пористость  перегородки  уменьшается,  а  сопротивление   возрастает.
Поэтому возникает необходимость удаления пыли и регенерации фильтра.
         В  зависимости  от  назначения  и  величины  входной   и   выходной
концентрации фильтры условно разделяют на три класса:
      фильтры тонкой  очистки  (высокоэффективные  или  абсолютные  фильтры)
предназначены для улавливания  с  очень  высокой  эффективностью  (>99%)  в
основном  субмикронных  частиц  из  промышленных  газов  с  низкой  входной
концентрацией  (<1  мг/м3)  и  скоростью  фильтрования  <10  см/с.  Фильтры
применяют для улавливания особо токсичных частиц, а также для  ультратонкой
очистки воздуха при проведении некоторых технологических процессов. Они  не
подвергаются регенерации;
      воздушные фильтры (  используют  в  системах  приточной  вентиляции  и
кондиционирования воздуха. Работают при концентрации пыли  менее  50  мг/м3,
при  высокой  скорости  фильтрации  (  до  2,5(3  м/с.  Фильтры  могут  быть
нерегенерируемые и регенерируемые;
      промышленные   фильтры   (тканевые,    зернистые,    грубоволокнистые)
применяются для  очистки  промышленных  газов  концентрацией  до  60  г/м3.
Фильтры регенерируются.


      3.1 Тканевые фильтры


        Эти  фильтры  имеют  наибольшее  распространение.   Возможности   их
использования расширяются в связи с созданием  новых  температуростойких  и
устойчивых   к   воздействию   агрессивных   газов    тканей.    Наибольшее
распространение имеют рукавные фильтры (рис. 1-10).

      Корпус фильтра  представляет  собой  металлический  шкаф,  разделенный
вертикальными перегородками на секции, а каждой из которых размещена группа
фильтрующих рукавов. Верхние концы рукавов заглушены и  подвешены  к  раме,
соединенной с встряхивающим механизмом. Внизу имеется бункер  для  пыли  со
шнеком  для  ее  выгрузки.  Встряхивание  рукавов  з   каждой   из   секций
производится поочередно.

      В  тканевых  фильтрах  применяют  фильтрующие  материалы  двух  типов:
обычные ткани, изготавливаемые на ткацких  станках  и  войлоки,  получаемые
путем сволачивания или механического  перепутывания  волокон  иглопробивным
методом. В типичных фильтровальных тканях размер сквозных пор между  нитями
достигает 100—200 мкм.
      К тканям предъявляются следующие требования:  1)  высокая  пылеемкость
при фильтрации и способность удерживать после регенерации такое  количество
пыли, которое достаточно


                                    [pic]
                        Рисунок 2 - Рукавный фильтр:
           1 ( корпус; 2 ( встряхивающее   устройство; 3 ( рукав;
                       4 ( распределительная решетка.

      К тканям предъявляются следующие требования:
      1) высокая пылеемкость при фильтрации и способность  удерживать  после
регенерации  такое  количество  пыли,  которое  достаточно  для  обеспечения
высокой эффективности очистки газов от тонкодисперсных твердых частиц;
      2) сохранение оптимально  высокой  воздухопроницаемости  в  равновесно
запыленном состоянии;
       3)  высокая  механическая  прочность  и  стойкость  к  истиранию  при
многократных  изгибах,  стабильность  размеров  и  свойств  при   повышенной
температуре  и  агрессивном  воздействии  химических  примесей,  находящихся
сухих и насыщенных влагой газах;
       4) способность к легкому удалению накопленной пыли;
       5) низкая стоимость.
      Существующие материалы обладают не всеми указанными  свойствами  и  их
выбирают"  в  зависимости  от   конкретных   условий   очистки.   Например,
хлопчатобумажные ткани обладают хорошими фильтрующими  свойствами  и  имеют
низкую  стоимость,  но  обладают  недостаточной  химической  и  термической
стойкостью,   высокой   горючестью   и   влагоемкостью.   Шерстяные   ткани
характеризуются  большой   воздухопроницаемостью,   обеспечивают   надежную
очистку и регенерацию, но стойкость к кислым газам, особенно  к  SО[pic]  и
туману серной кислоты, низкая. Стоимость их выше, чем хлопчатобумажных. При
длительном воздействии высокой  температуры  волокна  становятся  хрупкими.
Работают при температуре газов до 90 °С.
      Синтетические ткани вытесняют материалы из хлопка и  шерсти  благодаря
более высокой прочности, стойкости к повышенным температурам и  агрессивным
воздействиям, более низкой стоимости. Среди них нитроновые  ткани,  которые
используют при температуре 120—130°С в химической промышленности и  цветной
металлургии. Лавсановые ткани используются для очистки горячих сухих  газов
в цементной, металлургической и химической промышленности. В кислых  средах
стойкость их высокая, в щелочных — резко снижается.

      Стеклянные ткани стойки при 150—350°С.
      Их   изготовляют    из    алюмобо-росилнкатного    бесщелочного    или
магнезиального стекла.
      Аэродинамические свойства чистых фильтровальных тканей характеризуются
воздухопроницаемостью  —  расходом  воздуха   при   определенном   перепаде
давления[pic],  обычно  разном  49  Па.   Воздухопроницаемость   выражается
м3/(м2(мин); численно она равна скорости фильтрации (в м/мин) при [pic]’ 49
Па. Сопротивление незапыленных тканей [pic]при нагрузках 0,3—2  м3/(м2(мин)
обычно составляет 5—40 Па.
      По мере запыления аэродинамическое сопротивление ткани  возрастает,  а
расход газа через фильтр уменьшается.
      Ткань   регенерируют   путем   продувки   в   обратном    направлении,
 механического встряхивания или другими методами. После  нескольких  циклов
 фильтрации-регенерации остаточное количество пыли в ткани стабилизируется;
 оно соответствует так называемому 

назад |  1  | вперед


Назад


Новые поступления

Украинский Зеленый Портал Рефератик создан с целью поуляризации украинской культуры и облегчения поиска учебных материалов для украинских школьников, а также студентов и аспирантов украинских ВУЗов. Все материалы, опубликованные на сайте взяты из открытых источников. Однако, следует помнить, что тексты, опубликованных работ в первую очередь принадлежат их авторам. Используя материалы, размещенные на сайте, пожалуйста, давайте ссылку на название публикации и ее автора.

281311062 © insoft.com.ua,2007г. © il.lusion,2007г.
Карта сайта