Я:
Результат
Архив

МЕТА - Украина. Рейтинг сайтов Webalta Уровень доверия



Союз образовательных сайтов
Главная / Предметы / Экология / Загрязнение нефтью. Экологические аспекты.


Загрязнение нефтью. Экологические аспекты. - Экология - Скачать бесплатно


Содержание
    Введение     3
    1. Химический состав нефти, свойства ее компонентов 6
    2. Анализ экологических аспектов этих свойств  19
    3. Методы решения проблемы загрязнения окружающий среды нефтью. 30
    Заключение.  32
    Список использованной литературы.  35

                                  Введение
      Вначале человек не задумывался о том,  что  таит  в  себе  интенсивная
добыча нефти и газа. Главным было  выкачать  их  как  можно  больше.  Так  и
поступали. Но вот в начале  40-х  гг.  текущего  столетия  появились  первые
настораживающие симптомы.
      Это случилось на нефтяном месторождении Уилмингтон (Калифорния,  США).
Месторождение протягивается через юго-западные районы  города  Лос-Анджелеса
и  через  залив  Лонг-Бич  доходит  до  прибрежных  кварталов   одноименного
курортного города. Площадь  нефтегазоносности  54  км2.  Месторождение  было
открыто в 1936 г., а уже в 1938 г. стало центром нефтедобычи  Калифорнии.  К
1968 г. из недр было выкачано почти 160 млн. т нефти  и  24  млрд.  м  газа,
всего же надеются получить здесь более 400 млн. т нефти.
      Расположение   месторождения   в   центре    высокоиндустриальной    и
густонаселенной области южной Калифорнии, а также  близость  его  к  крупным
нефтеперерабатывающим  заводам  Лос-Анджелеса  имело   важное   значение   в
развитии  экономики  всего  штата  Калифорния.  В  связи  с  этим  с  начала
эксплуатации  месторождения  до  1966  г.  на  нем  постоянно  поддерживался
наивысший уровень добычи по сравнению с  другими  нефтяными  месторождениями
Северной Америки.
      В  1939  г.  жители  городов  Лос-Анджелес  и  Лонг-Бич  почувствовали
довольно ощутимые сотрясения поверхности земли - началось проседание  грунта
над  месторождением.  В  сороковых  годах   интенсивность   этого   процесса
усилилась. Наметился район оседания в виде эллиптической чаши,  дно  которой
приходилось как раз на свод антиклинальной складки, где  уровень  отбора  не
единицу площади был максимален. В 60-х гг. амплитуда оседания  достигла  уже
8,7  м.  Площади,  приуроченные  к   краям   чаши   оседания,     испытывали
растяжение.    На    поверхности    появились  горизонтальные   смещения   с
амплитудой до 23  см,  направленные  к  центру  района.  Перемещение  грунта
сопровождалось  землетрясениями.  В  период  с  1949  г.  по  1961  г.  было
зафиксировано  пять  довольно  сильных  землетрясений.  Земля  в  буквальном
смысле  слова  уходила  из-под  ног.  Разрушались  пристани,   трубопроводы,
городские  строения,  шоссейные  дороги,  мосты  и  нефтяные  скважины.   На
восстановительные  работы  потрачено  150  млн.  $.  В  1951   г.   скорость
проседания достигла максимума - 81 см/год. Возникла угроза затопления  суши.
Напуганные  этими   событиями,   городские   власти   Лонг-Бича   прекратили
разработку месторождения до разрешения возникшей проблемы.
      К 1954 г. было доказано, что наиболее эффективным средством  борьбы  с
проседанием является закачка в  пласт  воды.  Это  сулило  также  увеличение
коэффициента нефтеотдачи. Первый этап работы по заводнению был начат в  1958
г., когда на южном крыле структуры стали  закачивать  в  продуктивный  пласт
без малого 60 тыс.м3 воды в сутки. Через десять  лет  интенсивность  закачки
уже возросла до 122  тыс.м3  сут.  Проседание  практически  прекратилось.  В
настоящее время в центре чаши оно не превышает  5  см/год,  а  по  некоторым
районам зафиксирован даже подъем поверхности на 15 см.  Месторождение  вновь
вступило  в  эксплуатацию,  при  этом  на  каждую  тонну  отобранной   нефти
нагнетают  около  1600  л  воды.  Поддержание  пластового  давления  дает  в
настоящее время на старых участках  Уилмингтона  до  70  %  суточной  добычи
нефти. Всего на месторождении добывают 13700 т/сут нефти.
      В последнее время появились сообщения о проседании дна Северного  моря
в пределах месторождения Экофиск после извлечения  из  его  недр  172  млн.т
нефти и 112 млрд. м3 газа. Оно сопровождается деформациями  стволов  скважин
и  самих  морских  платформ.   Последствия   трудно   предсказать,   но   их
катастрофический характер очевиден.
      Проседание   грунта   и   землетрясения   происходят   и   в    старых
нефтедобывающих  районах  России.  Особенно  это   сильно   чувствуется   на
Старогрозненском  месторождении.   Слабые   землетрясения,   как   результат
интенсивного отбора  нефти  из  недр,  ощущались  здесь  в  1971  г.,  когда
произошло землетрясение интенсивностью 7 баллов  в  эпицентре,  который  был
расположен в  16  км  от  г.  Грозного.  В  результате  пострадали  жилые  и
административные здания не только поселка нефтяников на месторождении, но  и
самого города. На старых месторождениях Азербайджана  -  Балаханы,  Сабунчи,
Романы (в пригородах г. Баку) происходит оседание поверхности, что  ведет  к
горизонтальным подвижкам. В свою очередь, это  является  причиной  смятия  и
поломки обсадных труб эксплуатационных нефтяных скважин.
      Совсем недавние отголоски интенсивных нефтяных разработок произошли  в
Татарии, где в апреле 1989 г. было зарегистрировано землетрясение  силой  до
6 баллов  (г.  Менделеевск).  По  мнению  местных  специалистов,  существует
прямая зависимость между усилением откачки  нефти  из  недр  и  активизацией
мелких землетрясений. Зафиксированы случаи обрыва  стволов  скважин,  смятие
колонн. Подземные толчки в этом районе особенно  настораживают,  ведь  здесь
сооружается Татарская АЭС. Во всех этих случаях  одной  из  действенных  мер
также является нагнетание в продуктивный пласт  воды,  компенсирующей  отбор
нефти.
      Начав эксплуатацию месторождений нефти и газа, человек,  сам  того  не
подозревая,  выпустил  джина  из  бутылки.  Поначалу  казалось,  что   нефть
приносит людям только выгоду, но постепенно  выяснилось,  что  использование
ее имеет и оборотную сторону. Чего же  больше  приносит  нефть,  пользы  или
вреда? Каковы последствия ее применения? Не окажутся  ли  они  роковыми  для
человечества?
1. Химический состав нефти, свойства ее компонентов
      Нефть относится к группе горных  осадочных  пород  вместе  с  песками,
глинами, известняками, каменной  солью  и  др.  Она  обладает  одним  важным
свойством - способностью гореть и выделять тепловую  энергию.  Среди  других
горючих ископаемых она имеет наивысшую теплотворную  способность.  Например,
для подогрева котельной или другой  установки  требуется  нефти  значительно
меньше по весу,  чем  каменного  угля.  Все  горючие  породы  принадлежат  к
особому семейству, получившему название каустобиолитов  (от  греческих  слов
«каустос»-  горючий,  «биос»  -жизнь,  «литое»  -   камень,   т.е.   горючий
органический камень).
      В химическом отношении нефть -  сложная  смесь  углеводородов  (УВ)  и
углеродистых соединений. Она состоит из следующих основных элементов:
      углерод (84-87%),  водород  (12-14%),  кислород,  азот,  сера  (1-2%).
Содержание серы может доходить до 3-5%  [З].  В  нефтях  выделяют  следующие
части: углеводородную, асвальто-смолистую,  порфирины,  серу  и  зольную.  В
каждой  нефти  имеется  растворенный  газ,  который  выделяется,  когда  она
выходит на земную поверхность.
      Главную  часть  нефти  составляют  углеводороды  различные  по  своему
составу, строению и свойствам,  которые  могут  находиться  в  газообразном,
жидком  и  твердом  состоянии.  В  зависимости  от  строения   молекул   они
подразделяются на три класса - парафиновые, нафтеновые и  ароматические.  Но
значительную  часть  нефти  составляют  углеводороды  смешанного   строения,
содержащие структурные  элементы  всех  трех  упомянутых  классов.  Строение
молекул  определяет  их  химические  и  физические   свойства.   Парафиновые
углеводороды,  или  как  их  еще  называют,  метановые  УВ  (алкановые,  или
алканы). Сюда относят метан СН4, этан С3Н6, пропан, бутан и изобутан.
      Для углерода характерна способность образовывать  цепочки,  в  которых
его атомы соединены последовательно друг  с  другом.  Остальными  связями  к
углероду  присоединены  атомы  водорода.  Количество   атомов   углерода   в
молекулах парафиновых УВ превышает количество атомов водорода в  2  раза,  с
некоторым постоянным во всех молекулах избытком,  равным  2.  Иначе  говоря,
общая формула углеводородов этого класса CnH2n+1.  Парафиновые  углеводороды
химически наиболее устойчивы и относятся к предельным УВ. В  зависимости  от
количества атомов углерода в молекуле углеводороды могут принимать  одно  из
трех агрегатных состояний. Например, если в молекуле от  одного  до  четырех
атомов углерода (СН4 - С4Ню), то УВ представляют  собой  газ,  от  5  до  16
(СэН^ - С^ЬГ^) - это жидкие УВ, а если больше 16 (СпНзб и т.д.) - твердые.
      Таким  образом,  парафиновые   углеводороды   в   нефти   могут   быть
представлены газами, жидкостями и твердыми кристаллическими веществами.  Они
по-разному влияют на свойства  нефти:  газы  понижают  вязкость  и  повышают
упругость паров; жидкие парафины хорошо  растворяются  в  нефти  только  при
повышенных температурах, образуя гомогенный раствор; твердые парафины  также
хорошо  растворяются  в  нефти  образуя  истинные   молекулярные   растворы.
Парафиновые УВ (за  исключением  церезинов)  легко  кристаллизуются  в  виде
пластинок и пластинчатых лент.
      Нафтеновые  (циклановае,  или  алициклические)  УВ  имеют  циклическое
строение  (С/СпНзп),  а  именно  состоят  из  нескольких  групп  –  CH2   -,
соединенных  между  собой  в   кольчатую   систему.   В   нефти   содержатся
преимущественно нафтены, состоящие из пяти или шести групп  СН2.  Все  связи
углерода и  водорода  здесь  насыщены,  поэтому  нафтеновые  нефти  обладают
устойчивыми свойствами. По  сравнению  с  парафинами,  нафтены  имеют  более
высокую плотность и меньшую упругость  паров  и  имеют  лучшую  растворяющую
способность.
      Ароматические УВ (арены) представлены формулой  СnНn,  наиболее  бедны
водородом. Молекула имеет  вид  кольца  с  ненасыщенными  связями  углерода.
Простейшим  представителем  данного  класса  углеводородов  является  бензол
С6Н6, состоящий из шести групп СН.
      Для ароматических УВ характерны большая растворяемость, более  высокая
плотность и температура кипения.
      Асфальто-смолистая часть нефтей представляет  собой  вещество  темного
окраса,  которое  частично  растворяется  в  бензине.  Растворившееся  часть
-асфальтены. Они обладают способностью набухать  в  растворителях,  а  затем
переходить  в  раствор.  Растворимость  асфальтенов  в   смолисто-углеродных
системах возрастает с  уменьшением  концентрации  легких  УВ  и  увеличением
концентрации ароматических углеводородов. Смола не растворяется в бензине  и
являются полярными веществами с относительной молекулярной массой  500-1200.
В них содержатся основное  количество  кислородных,  сернистых  и  азотистых
соединений нефти. Асфальтосмолистые вещества и  другие  полярные  компоненты
являются   поверхностно-активными   соединениями    нефти    и    природными
стабилизаторами водонефтяных эмульсий.
      Порфиритами  называют  особые   азотистые   соединения   органического
происхождения. Предполагают, что они образовались из гемоглобина животных  и
хлорофилла растений. Эти соединения разрушаются при температуре 200-250°С.
      Сера широко распространена в нефтях и углеводородном газе и содержится
как  в  свободном  состоянии,  так  и  в   виде   соединений   (сероводород,
меркаптаны).
      Зольная часть представляет собой остаток,  образующийся  при  сжигании
нефти. Это различные минеральные  соединения,  чаще  всего  железо,  никель,
ванадий, иногда соли натрия.
      Свойства нефти определяют  направление  ее  переработки  и  влияют  на
продукты,  получаемых  из   нефти,   поэтому   существуют   различные   виды
классификации,  которые  отражают  химическую  природу  нефти  и  определяют
возможные направления переработки.
      Например,  в  основу  классификации,  отражающей  химический   состав,
положено  преимущественное  содержание  в  нефти  какого-либо   одного   или
нескольких  классов  углеводородов.   Различают   нафтеновые,   парафиновые,
парафино-нафтеновые, парафино-нафтено-ароматические,  нафтено-ароматические,
ароматические. Так, в парафиновых нефтях все фракции  содержат  значительное
количество алканов; в парафино-нафтено-ароматических углеводороды всех  трех
классов содержатся  примерно  в  равных  количествах;  нафтено-ароматические
нефти характеризуются преимущественным содержанием  циклоалканов  и  аренов,
особенно в тяжелых фракциях. Также используется классификация по  содержанию
асфальтенов и смол. В технологической классификации  нефти  подразделяют  на
классы - по содержанию серы; типы  -  по  выходу  фракций  при  определенных
температурах; группы - по потенциальному содержанию базовых  масел;  виды  -
по содержанию твердых алканов (папафинов). При выходе  из  нефтяного  пласта
нефть содержит взвешенные частицы горных пород,  воду,  растворенные  в  ней
соли и газы. Нефть, получаемую непосредственно  из  скважин  называют  сырой
нефтью,  которая  иногда   сразу   транспортируется   в   ближайшие   центры
нефтепереработки.  Но  в  большинстве  случаев  добываемая  нефть   проходит
промысловую подготовку, так как она может быть  предназначена  для  экспорта
или для транспортирования в отдаленные от мест добычи  нефтеперерабатывающие
заводы.
      Перечисленные выше примеси вызывают коррозию оборудования и  серьезные
затруднения при транспортировании  и  переработки  нефтяного  сырья.  Именно
поэтому  перед  транспортированием  сырая  нефть  подготавливается:  из  нее
удаляется вода, большое количество механических примесей, солей  и  выпавших
твердых углеводородов. Также  следует  выделить  из  нефти  газ  и  наиболее
летучие ее компоненты. Если этого не сделать, то при хранении нефти даже  за
то время, которое пройдет, пока  она  не  попадет  на  нефтеперерабатывающий
завод, газ и наиболее легкие углеводороды будут утеряны. А между тем  газ  и
летучие  жидкие  УВ   являются   ценными   продуктами.   Кроме   того,   при
трубопроводной транспортировке нефтей из них необходимо удалять  все  легкие
газы.  В  противном  случае  на   возвышенных   участках   трассы   возможно
образование газовых мешков.
      Перечислим  важнейшие   показатели   качества:   фракционный   состав,
плотность, содержание воды, хлористых солей, механических примесей  и  серы.
Также определяют технологические показатели  нефти.  К  ним  можно  отнести:
давление  насыщенных  паров,  вязкость,  содержание  парафинов,  температура
застывание и вспышки, содержание  асфальтенов  и  смол.  (Иногда  определяют
кислотность, молекулярную массу, объемную долю газа, массовую  долю  тяжелых
металлов). Некоторые показатели качества нефти могут  определяться  согласно
договоренности между поставщиком и  покупателем.  Рассмотрим  значения  этих
показателей для характеристики нефти и получаемых из нее нефтепродуктов.
      Плотность   является   одним   из    наиболее    общих    показателей,
характеризующий  свойства  нефти  и   нефтепродуктов,   измерение   которого
предусмотрено   стандартами   различных   стран.    По    плотности    можно
ориентировочно  судить  об  углеводородном   составе   различной   нефти   и
нефтепродуктов, поскольку ее  значение  для  углеводородов  различных  групп
различна. Например, более высокая плотность указывает на большее  содержание
ароматических  углеводородов,  а  более  низкая  -  на  большее   содержание
парафиновых  УВ.  Углеводороды  нафтеновой  группы  занимают   промежуточное
положение. Таким образом, величина  плотности  до  известной  степени  будет
характеризовать не только химический состав и происхождение продукта,  но  и
его качество. При характеристики плотности отдельных фракций  нефти  следует
прежде  всего  отметить  возрастание  плотности  с  увеличением  температуры
кипения. Однако это  положение,  справедливое  для  большей  части  случаев,
имеет исключения.
      Важнейшим показателем  качества  нефти  является  фракционный  состав.
Фракционный состав определяется при лабораторной перегонке с  использованием
метода  постепенного  испарения,   в   процессе   которой   при   постепенно
повышающейся температуре из нефти отгоняют  части  -  фракции,  отличающиеся
друг  от  друга  пределами  выкипания.  Каждая  из  фракций  характеризуется
температурами начала и конца кипения.
      Промышленная перегонка нефти основывается на схемах с  так  называемым
однократным испарением и дальнейшей ректификацией.  Фракции,  выкипающие  до
350°С, отбирают при давлении  несколько  превышающим  атмосферное,  называют
светлыми  дистиллятами  (фракциями).  Названия  фракциям   присваиваются   в
зависимости от направления их дальнейшего  использования.  В  основном,  при
атмосферной перегонке получают следующие светлые дистилляты:  140°С  (начало
кипения) -бензиновая  фракция,  140-180°С  -  лигроиновая  фракция  (тяжелая
нафта), 140-220°С (180-240°С ) - керосиновая фракция, 180-350°С  (220-350°С,
240-350°С) - дизельная фракция (легкий или  атмосферный  газойль,  соляровый
дистиллят). Фракция, выкипающая выше 350°С является  остатком  после  отбора
светлых дистиллятов и называется мазутом. Мазут разгоняют под вакуумом  и  в
зависимости от дальнейшего направления переработки нефти получают  следующие
фракции: для получения топлив -  350-500°С  вакуумный  газойль  (дистиллят),
>500°С вакуумный остаток (гудрон); для получения  масел  -  300-400°С  (350-
420°С) легкая масленная фракция  (трансформаторный  дистиллят),  400-45  0°С
(420-490°С)  средняя  масленная  фракция  (машинный  дистиллят),   450-490°С
тяжелая масленная фракция (цилиндровый дистиллят), >490°С  гудрон.  Мазут  и
полученные из него фракции - темные. Таким образом, фракционирование  -  это
разделение сложной смеси компонентов на более простые  смеси  или  отдельные
составляющие. Продукты, получаемые как при первичной, так  и  при  вторичной
переработки нефти, относят к светлым,  если  они  выкипают  до  350°С,  и  к
темным, если пределы выкипания 350°С и выше.
      Нефти  различных  месторождений  заметно  отличаются  по  фракционному
составу, содержанию светлых и темных  фракций.  В  технических  условиях  на
нефть и нефтепродукты нормируются:
      • температура начала кипения;
      • температура, при которой отгоняется 10,50,90 и 97.5% от загрузки,  а
также остаток в процентах;
      • иногда лимитируется температура конца кипения.
      При добыче и переработке нефть дважды смешивается с водой: при  выходе
с большой скоростью из скважины вместе с сопутствующей ей пластовой водой  и
в  процессе  обессоливания,  т.е.  промывки  пресной  водой   для   удаления
хлористых солей. В нефти и нефтепродуктах  вода  может  содержаться  в  виде
простой взвеси, тогда она легко  отстаивается  при  хранении,  либо  в  виде
стойкой эмульсии, тогда прибегают  к  особым  приемам  обезвоживания  нефти.
Образование устойчивых  нефтяных  эмульсий  приводит  к  большим  финансовым
потерям.  При  небольшом  содержании  пластовой  воды  в  нефти  удорожается
транспортировка ее  по  трубопроводам,  потому  что  увеличивается  вязкость
нефти, образующей  с  водой  эмульсию.  После  отделения  воды  от  нефти  в
отстойниках и резервуарах часть нефти сбрасывается вместе  с  водой  в  виде
эмульсии и загрязняет сточные воды. Часть эмульсии  улавливается  ловушками,
собирается и накапливается в земляных амбарах  и  нефтяных  прудах,  где  из
эмульсии  испаряются  легкие  фракции  и  она   загрязняется   механическими
примесями.   Такие   нефти   получили   название   «амбарные   нефти».   Они
высокообводненные и смолистые, с большим содержанием механических  примесей,
трудно обезвоживаются.
      Содержание  воды  в  нефти  является  самой  весомой   поправкой   при
вычислении массы нетто нефти по  массе  брутто.  Этот  показатель  качества,
наряду с механическими примесями и хлористыми  солями,  входит  в  уравнение
для  определения  массы  балласта.   Присутствуя   в   нефти,   особенно   с
растворенными в  ней  хлористыми  солями,  вода  осложняет  ее  переработку,
вызывая коррозию аппаратуры. Имеющаяся в карбюраторном и дизельном  топливе,
вода снижает их теплотворную  способность,  засоряет  и  вызывает  закупорку
распыляющих форсунок. При уменьшении температуры кристаллики  льда  засоряют
фильтры, что может служить  причиной  аварий  при  эксплуатации  авиационных
двигателей.
      Содержание воды в масле усиливает ее склонность к окислению,  ускоряет
процесс  коррозии   металлических   деталей,   соприкасающихся   с   маслом.
Следовательно, вода оказывает негативное влияние как на процесс  переработки
нефти, так и на эксплуатационные свойства  нефтепродуктов  и  количество  ее
должно строго нормироваться.
      Присутствие  мехпримесей  объясняется  условиями  залегания  нефти   и
способами ее добычи. Механические примеси нефти состоят из взвешенных в  ней
высокодисперсных частиц  песка,  глины  и  других  твердых  пород,  которые,
адсорбируясь на поверхности глобул воды, способствуют стабилизации  нефтяной
эмульсии. При перегонке нефти примеси  могут  частично  оседать  на  стенках
труб, аппаратуры и  трубчатых  печей,  что  приводит  к  ускорению  процесса
износа аппаратуры.
      В  отстойниках,  резервуарах  и  трубах  при  подогреве  нефти   часть
высокодисперсных  механических  примесей  коагулирует,  выпадает  на  дно  и
отлагается на стенках, образуя  слой  грязи  и  твердого  осадка.  При  этом
уменьшается производительность аппаратов, а при отложении осадка на  стенках
труб уменьшается их теплопроводность. В ГОСТ  6370-83  приводятся  следующие
оценки  достоверности  результатов   определения   содержания   механических
примесей  при  доверительной  вероятности  95%.Массовая  доля   механических
примесей до 0.005% включительно оценивается как их отсутствие.
      ГОСТ 9965-76  устанавливает  массовую  долю  механических  примесей  в
нефти, которая может быть не более 0.05%.
      Сера и ее соединения являются постоянными составляющими частями  сырой
нефти. По химической природе - это соединения сульфидов,  гомологов  тиофана
и тиофена. Кроме указанных  соединений,  в  нефти  встречаются  сероводород,
меркаптаны и дисульфиды. Меркаптаны или тиоспирты - легколетучие жидкости  с
чрезвычайно отвратительным запахом;  сульфиды  или  тиоэфиры  -  нейтральные
вещества, нерастворяющиеся  в  воде,  но  растворяющиеся  в  нефтепродуктах;
дисульфиды или полисульфиды - тяжелые жидкости с неприятным  запахом,  легко
растворяющиеся в нефтепродуктах, и очень мало в воде; тиофен - жидкость,  не
растворяющаяся в воде.  Соединения  серы  в  нефти,  как  правило,  являются
вредной  примесью.  Они  токсичны,  имеют  неприятный  запах,   способствуют
отложению  смол,  в  соединениях  с  водой  вызывают  интенсивную   коррозию
металла. Особенно в этом отношении  опасны  сероводород  и  меркаптаны.  Они
обладают высокой  коррозийной  способностью,  разрушают  цветные  металлы  и
железо. Поэтому их присутствие  в  товарной  нефти  не  допустимо.  Точность
метода  определения  серы  согласно  ГОСТ  1437-75   выражается   следующими
показателями:
         . сходимость - результаты определения, полученные  последовательно
           одним лаборантом,  признаются  достоверными  (при  доверительной
           вероятности 95%),  если  расхождение  между  ними  не  превышает
           значений, указанных в таблице №1;
         . воспроизводимость - результаты анализа, полученные в двух разных
           лабораториях,   признаются   достоверными   (при   доверительной
           вероятности 95%),  если  расхождение  между  ними  не  превышает
           значений, указанных в таблице № 1.
                                                                 Таблица № 1
   Сходимость и воспроизводимость метода определения серы по ГОСТ 1437-75
|Массовая доля серы, %|Сходимость, %          |Воспроизводимость, %    |
|До 1.0               |0.05                   |0.20                    |
|Св. 1.0 до 2.0       |0.05                   |0.25                    |
|Св. 2.0 до 3.0       |0.10                   |0.30                    |
|Св. 3.0 до 5.0       |0.10                   |0.45                    |

      Вязкость является  важнейшей  физической  константой,  характеризующей
эксплуатационные   свойства   котельных,   дизельных   топлив    и    других
нефтепродуктов. Особенно важна эта характеристика для  определения  качества
масленых фракций, получаемых при переработке нефти  и  качества  стандартных
смазочных масел. По значению  вязкости  судят  о  возможности  распыления  и
перекачивания нефтепродуктов, при транспортировке  нефти  по  трубопроводам,
топлив в двигателях и т.д.
      Перегонка  нефти,  содержащей  соли,  становится   невозможной   из-за
интенсивной коррозии аппаратуры, а также  из-за  отложения  солей  в  трубах
печей и  теплообменниках.  В  результате  могут  прогореть  печные  трубы  и
возникнуть пожар, непрерывно повышаться давление на сырьевых печных  насосах
вследствие  уменьшения  диаметра   печных   труб   и,   наконец,   полностью
прекратится подача сырья в печь.
      Основным коррозирующим фактором является присутствие хлоридов в нефти.
При подогреве нефти  до  120  С  и  выше  в  присутствии  даже  следов  воды
происходит интенсивный гидролиз хлоридов с выделением сильно  коррозирующего
агента - хлористого водорода НС1. Гидролиз хлоридов идет согласно  следующим
уравнениям:
                         MgCl2 + Н2O = MgOHCl + НС1
                        MgCI2 + 2Н20 = Mg(OH)2 + 2НС1
      С  повышением  температуры  скорость  гидролиза  хлоридов  значительно
увеличивается.   Из   содержащихся   в   нефти   хлоридов   наиболее   легко
гидролизируется  хлористый  магний,  за  ним  следует  хлористый  кальций  и
труднее всех  гидролизируется  хлористый  натрий.  При  перегонке  сернистой
нефти сероводород 

назад |  1  | вперед


Назад


Новые поступления

Украинский Зеленый Портал Рефератик создан с целью поуляризации украинской культуры и облегчения поиска учебных материалов для украинских школьников, а также студентов и аспирантов украинских ВУЗов. Все материалы, опубликованные на сайте взяты из открытых источников. Однако, следует помнить, что тексты, опубликованных работ в первую очередь принадлежат их авторам. Используя материалы, размещенные на сайте, пожалуйста, давайте ссылку на название публикации и ее автора.

281311062 © insoft.com.ua,2007г. © il.lusion,2007г.
Карта сайта