Время - это:
Результат
Архив

МЕТА - Украина. Рейтинг сайтов Webalta Уровень доверия



Союз образовательных сайтов
Главная / Предметы / Банковское дело / Анализ и прогнозирование конъюнктуры рынка ценных бумаг


Анализ и прогнозирование конъюнктуры рынка ценных бумаг - Банковское дело - Скачать бесплатно


  |
|                |ценных бумаг    |                |                |



      Глава 4. Факторы, влияющие на конъюнктуру рынка ценных бумаг

            4.1. Макроэкономические показатели деловой активности
      “Макроэкономические показатели деловой активности влияют на
конъюнктуру биржевого рынка, так как биржи функционируют в условиях
конкретной макросреды. Эти показатели можно разделить на три группы:
   1. опережающие (leading)
   2. совпадающие (coincidental)
   3. отстающие (lagging) индикаторы
      Изменение опережающих показателей происходит ранее изменений
      экономической
конъюнктуры страны, поэтому они представляют наибольший интерес для
прогнозирования. Изменения совпадающих индикаторов происходит одновременно
с циклическими колебаниями, а отстающих индикаторов – после этих колебаний.
      В западной практике пользуются агрегатными индексами, усредняющими
периоды опережения входящих в них индикаторов. Например, Бюро
экономического анализа Министерства торговли США ежемесячно публикует такой
индекс, составленный из 11 макроэкономических индикаторов, среди которых
средняя продолжительность рабочей недели в обрабатывающей промышленности,
объем заказов на производство потребительских товаров, сумма контрактов на
сооружение промышленных объектов и изготовление оборудования, объем заказов
на товары длительного пользования, фондовый индекс “Стандард энд Пур-500”,
денежный агрегат, индекс потребительских ожиданий и др. Считается, что в
целом опережение агрегатного индекса составляет 6 месяцев. Публикация
данного индекса оказывает большую помощь американским финансовым
аналитикам, хотя его недостатком является краткосрочность опережения цикла.
      Важнейшим обобщающим показателем  экономической активности за
определённые периоды времени служат валовой национальный продукт (ВВП) и
валовой внутренний продукт (ВВП). Динамика этих высококоррелированных
показателей отражают разные фазы экономического цикла – кризиса, депрессии,
оживления и подъёма, что позволяет с известной точностью предсказывать
изменения объема отраслевых продаж. Вместе с тем, по определению ВНП
отражает совокупный доход страны и поэтому предпочтителен для
прогнозирования объема продаж отраслей потребительского сектора. В свою
очередь, ВВП относится к производству товаров и услуг внутри страны и,
следовательно, на его базе желательно оценивать будущие продажи
предприятий, производящих полуфабрикаты, сырьё, оборудование и т.п. Кроме
того,  ВВП используется в международных сравнениях.” [6]



                                 Заключение

      Перспективы совершенствования методов анализа  и  увеличения  точности
прогнозов.

      В  классическом   техническом   анализе   уже   существует   несколько
      направлений,
работа в которых обещает увеличение точности прогнозов,  снижение  риска  от
сделок,  увеличение  доходов.  Это  подбор  параметров  для  уже   имеющихся
индикаторов,  поиск  наиболее  удачных   комбинаций  индикаторов,  а   также
создание новых. Работа в  этих  направлениях  активно  ведется   в  США,  на
родине большинства методов технического анализа.
      “Быстрое развитие компьютерных технологий открывает новые  перспективы
для работ в  области  прогнозирования  ситуаций  на  финансовых  и  товарных
рынках.  Наиболее  значительным  прорывом   в   этой   области   большинство
специалистов считают развитие нейрокомпьютинг.
      Нейрокомпьютинг - это научное  направление,  занимающееся  разработкой
вычислительных систем шестого поколения - нейрокомпьютеров, которые  состоят
из большого числа параллельно работающих  простых  вычислительных  элементов
(нейронов). Элементы  связаны  между  собой,  образуя  нейронную  сеть.  Они
выполняют  единообразные  вычислительные  действия  и  не  требуют  внешнего
управления. Большое число параллельно  работающих  вычислительных  элементов
обеспечивают  высокое   быстродействие.   В   настоящее   время   разработка
нейрокомпьютеров  ведется  в   большинстве   промышленно   развитых   стран.
Нейрокомпьютеры  позволяют  с  высокой  эффективностью  решать   целый   ряд
"интеллектуальных" задач.  Это  задачи  распознавания  образов,  адаптивного
управления,  прогнозирования  (в  т.ч.  в  финансово-экономической   сфере),
диагностики и т.д.
      Нейросеть – это компьютерная программа, имитирующая способность
человеческого мозга классифицировать примеры, делать предсказания или
принимать решения, основываясь на опыте прошлого. Стремительное развитие
технологии нейронных сетей и генетических алгоритмов началось лишь в конце
80-х годов, и пока остается уделом немногочисленной группы специалистов,
как правило, теоретиков в области искусственного интеллекта. Но в России
уже начали появляться нейронные сети, хорошо зарекомендовавшие себя на
Западе, ведутся разработки собственных программ, для прогнозирования самых
различных событий. Упрощая, технику применения нейронных сетей для
прогнозов на фондовом рынке можно условно разбить на следующие этапы:
    - подбор базы данных,
    - выделение «входов» (исходные данные) и «выходов» (результаты
      прогноза). Входами можно сделать цены открытия, закрытия, максимумы,
      минимумы за какой-то период времени, статистика значений различных
      индикаторов (например, индексы Доу Джонса, Никкей, комбинации курсов
      валют, доходность государственных ценных бумаг, отношения
      фундаментальных и технических индикаторов и др.), обычно выбирается от
      6 до 30 различных параметров. Количество выходов рекомендуется делать
      как можно меньше, но это могут быть цены открытия, закрытия,
      максимумы, минимумы следующего дня,
    - выделение в массиве данных тренировочных и экзаменационных участков,
    - обучение нейросети: на этом этапе нейронная сеть обрабатывает
      тренировочные примеры, пытается дать прогноз на экзаменационных
      участках базы данных, сравнивает полученную ошибку с ответом,
      имеющимся в примере (базе данных), а также с ошибкой предыдущего этапа
      обучения и изменяет свои параметры так, чтобы это изменение приводило
      к постоянному уменьшению ошибки.
    - введение срока прогноза,
    - получение значения прогнозируемых данных на выходе нейросети.” [1]



                      Список использованной литературы
1.www.rcb.ru
2. Джон Дж. Мэрфи Технический анализ фьючерсных рынков: теория и практика.
– М.: Диаграмма, 2000 г.
3. Эрлих А.. Технический анализ товарных и финансовых рынков. – М.: ИНФРА-
М, 1996 г.
4. Бердникова Т.Б. Рынок ценных бумаг и биржевое дело. – М.: ИНФРА-М, 2002.
5. Бердникова Т.Б. Прогнозирование экономического и социального развития. –
Белгород, 1991.
6. Бердникова Т.Б. Рынок ценных бумаг. – М.: ИНФРА-М, 2002
7.Бланк И. Финансовый рынок. Т.1 – Киев, 2000
8. Бестужев-Лады И.В. Рабочая книга по прогнозированию. – М.: Мысль, 1982
 

назад |  3 | вперед


Назад


Новые поступления

Украинский Зеленый Портал Рефератик создан с целью поуляризации украинской культуры и облегчения поиска учебных материалов для украинских школьников, а также студентов и аспирантов украинских ВУЗов. Все материалы, опубликованные на сайте взяты из открытых источников. Однако, следует помнить, что тексты, опубликованных работ в первую очередь принадлежат их авторам. Используя материалы, размещенные на сайте, пожалуйста, давайте ссылку на название публикации и ее автора.

281311062 © il.lusion,2007г.
Карта сайта