Электроизоляционная керамика - Радиоэлектроника - Скачать бесплатно
Министерство образования Российской Федерации
Уфимский Государственный Нефтяной Технический Университет
Кафедра автоматизации производственных процессов
Реферат на тему:
«Электроизоляционная керамика»
Выполнил:
ст. гр. АЭ-01-01
Швыткин К.Е.
Проверил:
Прахова Т.Ю.
Уфа 2004
СОДЕРЖАНИЕ:
стр.
1. Классификация и основные свойства электроизоляционной
керамики
2
2. Основные сырьевые материалы для производства электро-изоляционной
керамики
6
3. Технология производства электрокерамических материалов
и изделий
9
4. Механическая обработка и металлизация керамических из-
делий
18
Приложения
22
Список литературы
31
1. КЛАССИФИКАЦИЯ И ОСНОВНЫЕ СВОЙСТВА ЭЛЕКТРО-ИЗОЛЯЦИОННОЙ
КЕРАМИКИ
Электроизоляционная керамика представляет собой материал, получаемый из
формовочной массы заданного химического состава из минералов и оксидов
металлов. Любая керамика, в том числе и электроизоляционная,— материал
многофазный, состоящий из кристаллической, аморфной и газовой фаз. Ее
свойства зависят от химического и фазового составов, макро- и
микроструктуры и от технологических приемов изготовления./1/
В электрической и радиоэлектронной промышленности керамическая технология
широко применяется для изготовления диэлектрических, полупроводниковых,
пьезоэлектрических, магнитных, металлокерамических и других изделий. В
настоящее время, особенно с проникновением в быт электронной техники, из
электроизоляционной керамики изготавливаются десятки тысяч наименований
изделий массой от десятых долей грамма до сотен килограммов и размерами от
нескольких миллиметров до нескольких метров. В ряде случаев изделия из
керамики, главным образом из электрофарфора, покрываются глазурями, что
уменьшает возможность загрязнения, улучшает электрические и механические
свойства, а также внешний вид изделия./14/
Электрофарфор является основным керамическим материалом, используемым в
производстве широкого ассортимента низковольтных и высоковольтных
изоляторов и других изоляционных элементов с рабочим напряжением до 1150 кВ
переменного и до 1500 кВ постоянного тока./8/
Преимущества электрокерамики перед другими электроизоляционными
материалами состоят в том, что из нее можно изготовлять изоляторы сложной
конфигурации, кроме того она имеет широкий интервал спекания. Сырьевые
материалы мало дефицитны, технология изготовления изделий относительно
проста./15/ Электрофарфор обладает достаточно высокими
электроизоляционными, механическими, термическими свойствами в области
рабочих температур; он выдерживает поверхностные разряды, слабо подвержен
старению, стоек к воздействию атмосферных осадков, многих химических
веществ, солнечных лучей и радиационных излучений./8/
В связи с передачей энергии высоким и сверхвысоким напряжением на дальнее
расстояние резко возросли требования к качеству высоковольтных изоляторов,
главным образом к механической прочности./12/
В последние годы выпускаются надежные высокопрочные изоляторы
оптимизированной конструкции из электрофарфора высокого качества. Известно,
что прочность фарфора при сжатии в 10—20 раз выше прочности при изгибе или
растяжении.
По назначению компоненты фарфора различаются на пластичные и отощающие, а
по роли при термической обработке — на плавни и кристаллорбразующие.
Механическая прочность фарфора в значительной степени зависит от
механических свойств и кристаллической структуры отощающего материала, а
также образованных в процессе обжига сетчатых волокнистых микроструктур
кристаллической фазы (в частности, игл муллита). Стеклофаза в структуре
фарфора ухудшает механическую прочность, так же как и наличие пор,
неблагоприятно влияющих на распределение напряжений.
Наравне с обычным фарфором налажен выпуск фарфора с повышенным
содержанием муллита, фарфор кристобалитовый и корундовый. В последнем
кремнезем в шихте частично заменен корундом./13/
Большинство корундовых кристаллов при обжиге остается в исходной форме и
благодаря высокому сопротивлению упругой деформации образует прочный каркас
микроструктуры. Незначительная часть растворяется в стек-лофазе и является
причиной возникновения вторичного муллита. Как следует из табл. 1 (см.
приложения), механическая прочность корундового фарфора значительно выше
прочности обычного фарфора.
Наиболее перспективным является корундовый фарфор./16/
Следует ожидать, что традиционные способы производства, т. е. литье
изоляторов в гипсовые формы, а для больших опорных изоляторов — склейка
отдельных элементов до обжига, заменяется пластическим прессованием,
выдавливанием массивного цилиндра или трубки с дополнительной обработкой на
копировальных станках, а также изостатическим прессованием заготовок с
последующей автоматической обработкой. Использование последнего способа
производства изоляторов существенно сократит технологический цикл и объем
трудозатрат./5/
По ГОСТ 20419-83 (соответствует СТ СЭВ 3567-83) «Материалы керамические
электротехнические» эти материалы по их составу классифицируются следующим
образом:
Группа 100 материалы на основе щелоч-
ных алюмосиликатов
(фарфоры):
Подгруппа силикатный фарфор, со-
110 держащий до 30% А12О3;
Подгруппа силикатный фарфор тон-
110.1 кодисперсный;
Подгруппа силикатный фарфор прес-
111 сованный;
Подгруппа силикатный фарфор вы-
112 сокой прочности;
Подгруппа глиноземистый фарфор
120 (содержащий 30—50 %
А1203);
Подгруппа глиноземистый фарфор
130 высокой прочности, со-
держащий свыше 50 %
А1203.
Группа 200 материалы на основе си-
ликатов магния (стеати-
ты) :
Подгруппа стеатит прессованный;
210
Подгруппа стеатит пластичный;
220
Подгруппа стеатит литейный
220.1
Группа 300 материалы на основе ок-
сида титана, титанатов,
станнатов и ниобатов;
Подгруппа материалы на основе ок-
310 сида титана;
Подгруппа материалы на основе ти-
340 танатов стронция, вис-
мута, кальция;
Подгруппа материалы на основе ти-
340.1 таната кальция;
Подгруппа материалы на основе
340.2 стронций-висмутового ти-
таната;
Подгруппа материалы на основе
350 титаната бария с ?r до
3000;
Подгруппа материалы на основе ти-
350.1 таната бария, стронция,
висмута;
Подгруппа материалы на основе ти-
351 таната бария с ?г свыше
3000;
Подгруппа материалы на основе ти-
351.1 таната бария, станната и цирконата кальция.
Группа 400 материалы на основе
алюмосиликатов магния
(кордиерит) или бария
(цельзиан), плотные:
Подгруппа кордиерит;
410
Подгруппа цельзиан.
420
Группа 500 материалы на основе
алюмосиликатов магния,
пористые:
Подгруппа
510. материалы на
Подгруппа основе алюмосиликатов
511 магния, пористые термо
Подгруппа стойкие;
512
Подгруппа высококордиеритовый
520. материал, пористый;
Подгруппа высокоглиноземистый
530 материал, пористый, тер-
мостойкий.
Группа 600 глиноземистые материа-
лы (муллитокорундовые):
Подгруппа глиноземистый матери-
610 ал, содержащий 50 —65 % А1203;
Подгруппа глиноземистый матери-
620 ал, содержащий 65 —80 % А1203;
Подгруппа глиноземистый матери-
620.1 ал, содержащий 72 —77 % А1203.
Группа 700 высокоглиноземистые ма-
териалы (корундовые):
Подгруппа высокоглиноземистый
780 материал, содержащий
80—86 % А12О3;
Подгруппа высокоглиноземистый
786 материал, содержащий
86—95 % А12О3;
Подгруппа высокоглиноземистый
795 материал, содержащий
95—99 % А12О3;
Подгруппа высокоглиноземистый
799 материал, содержащий
свыше 99 % А1203./1/
Электроизоляционные керамические материалы по назначению классифицируются
согласно табл. 2 (см. приложения)./16/
Если поры керамики сообщаются между собой и поверхностью изделия, то она
называется «пористой», т. е. имеющей «открытые» поры.
Все керамические материалы более или менее пористые. Даже в обожженной до
максимальной плотности керамике объем пор (закрытых) составляет 2—6 %, а в
пористых материалах— 15—25 %.
Открытая пористость измеряется значением водопоглощения, т. е.
количеством воды, поглощаемым материалом до насыщения и отнесенным к массе
сухого образца.
В тех случаях, когда водопоглощение образца не превышает 0,5 %, для
определения пористости часто применяется качественный метод: прокраска
образцов в 1 %-ном спиртовом растворе фуксина. Наличие открытой пористости
определяется по проникновению красителя в толщу образца.
Для характеристики плотности керамики употребляют параметр — кажущаяся
плотность, ее значение 1800—5200 кг/м3./13/
2. ОСНОВНЫЕ СЫРЬЕВЫЕ МАТЕРИАЛЫ ДЛЯ ПРОИЗВОД-СТВА ЭЛЕКТРОЛЯЦИОННОЙ
КЕРАМИКИ
Сырьевые материалы для производства электрофарфора. Для изготовления
электрофарфора основными сырьевыми материалами служат огнеупорные глины,
кварц, пегматиты, полевые шпаты, каолины, глинозем, ашарит и циркон (для
производства соответственно глиноземистого, ашаритового и цирконового
фарфора), мел и доломит (в качестве плавней, главным образом, в глазури) и
др.
Огнеупорные глины и каолины представляют собой тонкозернистые (от
коллоидной дисперсности до размеров частиц менее 2 мкм) водные
алюмосиликаты; для них характерна слоистая структура.
Основными составляющими тонкозернистой фракции глинистых пород являются
минералы каолиновой группы с химическими формулами А12О3 x x2SiO2 • 2Н2О
(каолинит), А12О3 • 2SiO2 • 4Н2О (галлуазит) и др. Для производства
высоковольтного фарфора отечественными заводами используются глины и
каолины, химический состав которых и потери по массе при прокаливании
приведены в табл. 3 и 4 (см. приложения).
Кварцевые материалы. Кристаллический кремнезем SiO2 является одним из
основных компонентов фарфоровой массы, который вводят в состав шихты в виде
кварцевого песка или жильного кварца. Размер гранул кварцевых песков
составляет 0,05—3 мм. Кристаллический кремнезем существует в нескольких
полиморфных формах; три основные — кварц, тридимит и кристобалит. В свою
очередь кварц и кристобалит имеют ?- и ?-модификации, тридимит — ?-, ?- и
?-модификации. Стабильными формами являются ?-кварц (при температуре ниже
573 °С), ?-тридимит (870—1470 °С) и ?-кристобалит (1470—1710°С). Переход из
одной модификации кремнезема в другую сопровождается изменением объема,
плотности и других параметров. При производстве электрокерамики
используются пески и жильный кварц, химический состав которых приведен в
табл. 5 (см. приложения).
В зависимости от месторождения кварцевые пески имеют примеси (Fe2O3,
TiO2, A12O3, CaO, MgO и др.), наиболее нежелательные из которых Fe2O3 и
ТiO2 (допустимое содержание не более 0,15 %), СаО и MgO (не более 0,2 %).
Полевые шпаты представляют собой безводные алюмосиликаты, содержащие
щелочные (Na+, К+) и щелочно-земельные (Са2+) катионы. Основные виды
применяемых в керамическом производстве полевых шпатов: калиевый
(микроклин) с приблизительной формулой К2О•А12O3•6SiO2, натриевый (альбит)
Na2O•Al2O3•6SiO2, кальциевый (анортит) СаО•А12О3•2SiO2 и бариевый
(цельзиан) ВаО•А12О3•2SiO2. Полевые шпаты всегда содержат примеси оксидов
железа, магния, кальция и др./18/
Лучшим для изоляционной керамики полевым шпатом является микроклин. Из-за
повышенного содержания Na2O в полевом шпате снижаются температура обжига,
вязкость стеклофазы керамики и существенно ухудшаются его электрофизические
свойства. Чем больше соотношение К2О и Na2O в полевом шпате, тем лучше
свойства керамики.
В связи с ограниченностью запасов высококачественного полевого шпата для
производства высоковольтных изоляторов используют пегматиты.
Пегматиты представляют собой крупнозернистые кристаллические породы —
смесь полевого шпата с кварцем. Химический состав пегматитов и полевых
шпатов приведен в табл. 6 (см. приложения).
Глинозем — безводный оксид алюминия Al2О3 — представляет собой порошок со
средними размерами сферических гранул 50— 200 мкм. Глинозем широко
применяется как основной компонент электрофарфора и ультрафарфора (на
основе корунда) и в качестве самостоятельного материала для изготовления
высоковольтных, высокочастотных изоляторов, конденсаторов, деталей вакуум-
плотных узлов (корпусов предохранителей, колб натриевых ламп, корпусов
полупроводниковых вентилей, обтекателей антенн, плат для интегральных схем
и др.).
Безводный оксид алюминия существует в нескольких кристаллических
модификациях, из которых самой устойчивой является ?-А12О3 (корунд). Эта
модификация характеризуется малым tg??2•10-4, высоким ??1014 Ом•м, высокой
теплопроводностью и стойкостью к термоударам, наибольшей плотностью
(3999 кг/м3).
Две другие модификации: ?-А12О3 и ?-А12О3, последняя из которых
представляет собой соединение глинозема со щелочными и щелочноземельными
оксидами, имеют меньшую плотность (соответственно 3600 и 3300—3400 кг/м3) и
более высокие значения tg? (?50•10-4 и 1000•10-4). Технический глинозем
представляет собой в основном ?-А12О3 с частичным содержанием гидратов
глинозема.
При нагреве ?-Аl2О3 переходит в ?-А12О3 с уменьшением объема на 14,3
процента. Для уменьшения усадки керамики при обжиге технический глинозем
предварительно обжигают при температуре 1450—1550 °С.
Спектрально чистый корунд плавится при 2050 °С, а изделия из него при
небольшой механической нагрузке могут быть использованы даже при
температуре до 1800°С.
Для производства электроизоляционной керамики применяются технический
глинозем (шесть сортов), электроплавленный корунд и глинозем особой чистоты
в зависимости от назначения керамики.
Кальцит — карбонат кальция СаСО3, представляющий собой плотный
кристаллический агрегат, называется мрамором, а при тонкодисперсной
структуре — мелом. При нагреве СаСО3 разлагается с выделением СО2 согласно
реакции СаСО3 > СаО + СО2^. Скорость разложения зависит от скорости
подъема температуры и от давления воздуха. При нормальных условиях
температура разложения составляет порядка 900 °С.
Для производства электроизоляционной керамики в основном используют мел
Белгородского месторождения с содержанием СаСО3 не менее 98 %.
В керамике карбонат кальция используется как основной компонент
кристаллических фаз титанатов, станнатов и цирконатов кальция, анортита,
волластонита, а также входит в состав стеклофазы различных электрокерамик и
глазурей.
Ашарит — борат магния 2MgO•B2O3•H2O является стеклообразующим оксидом.
Его твердость по Моосу — 4. Он добавляется в керамические массы в
количестве 2—3 %. Ашарит в состав ашаритового фарфора вводится в виде
предварительно приготовленного спека из глинозема, ашарита и полевого шпата
в количестве до 60 % массы, для улучшения электроизоляционных свойств
фарфора.
Циркон ZrO2•SiO2 (цирконовая руда) имеет твердость 7—8; плотность его
около 4700 кг/м3. Руду обогащают, в результате полученный циркон содержит
ZrO2 не менее 60 % и Fe2O3 не более 0,15 %. Циркон используется в качестве
основного компонента в стойкой к термоударам керамике и в виде части
кристаллической фазы цирконового фарфора. В последнем случае циркон
вводится в состав фарфора вместо кварца, кристаллическая фаза керамики в
таком случае представлена цирконом и муллитом. Химический состав сырья,
содержащего цирконий, приведен в табл. 7 (см. приложения)./13/
Сырьевые материалы для производства других видов керамики. Тальк разных
месторождений имеет состав, близкий к 3MgO•4SiO2•H2O или 4MgO•5SiO2•H2O, с
незначительным количеством других оксидов. Лучшие разновидности талька
отличаются малым содержанием СаО (от 0,2 до 1 %) и Fe2O3 (от 0,3 до 0,8 %).
Тальк должен иметь однородный состав без прослоек, а потери массы при
прокаливании не должны превышать 5—7 %.
Химический состав тальков, используемых для производства стеатитов,
приведен в табл. 8 (см. приложения).
Диоксид титана — мелкодисперсный порошок белого цвета с желтоватым
оттенком. Для природного и полученного химическим путем диоксида титана
характерен полиморфизм.
Технические данные диоксида титана приведены в табл. 9, химический
состав — в табл. 10 (см. приложения)./17/
3. ТЕХНОЛОГИЯ ПРОИЗВОДСТВА ЭЛЕКТРОКЕРАМИЧЕСКИХ МАТЕРИАЛОВ И ИЗДЕЛИЙ
В общем случае технологический процесс производства электрокерамических
изделий можно представить схемой рис. 1 (см. приложения). Для каждого
конкретного случая процесс будет несколько видоизменяться, однако можно
отметить общие для большинства случаев основные этапы производства:
приготовление формовочной массы; оформление заготовок изделий; сушка,
глазурование и обжиг изделий. В некоторых случаях обожженные изделия могут
подвергаться дополнительной механической обработке./5/
Приготовление формовочной массы. Керамическая формовочная масса
характеризуется размерами и распределением частиц; от этого зависят
плотность упаковки, влагосодержание и прочность заготовки до обжига,
технологические свойства материала, а также характеристики обожженных
керамических изделий.
Измельчение компонентов является одним из основных процессов при
приготовлении формовочных масс. Как правило, твердые минеральные компоненты
массы сначала подвергают грубому измельчению в щековых дробилках и на
бегунах, затем просеивают на виброситах для получения заданной фракции,
далее производят мокрый или сухой тонкий помол на ротационных шаровых
мельницах периодического или непрерывного действия. Сверхтонкий помол
производят в струйных мельницах с использованием сжатого воздуха.
Степень измельчения отдельных компонентов массы зависит от требований,
предъявляемых к материалу, размеров изделий и применяемых способов
оформления, сушки и обжига. При измельчении обычно происходит смешение
компонентов массы. Степень измельчения проверяют ситовым и микроскопическим
анализами, а в лабораторных условиях — седиментационным. Для удаления
частиц железа измельченную массу пропускают через магнитный сепаратор.
Обезвоживание водного шликера после мокрого помола производится на
фильтр-прессе под давлением 0,8—3 МПа. Масса, остающаяся между пластинами
фильтра в виде коржей, в зависимости от назначения проходит различную
обработку. При изготовлении масс для пластичной формовки коржи поступают
для переминки в вакуум-прессы, с помощью которых обеспечивается хорошее
извлечение воздуха, окончательная переминка массы и выдавливание ее через
мундштук, придающий заготовкам определенный профиль. Заготовки используются
для формовки изделий пластичными методами.
Для приготовления водного литейного шликера коржи распускаются в
шликерных мешалках в воде с добавкой электролита и доводятся до нужной
влажности. После вакуумирования шликер подается на литье. Безглинистые
массы или массы с небольшим содержанием глинистых веществ (например,
конденсаторные массы с содержанием около 3 % бентонита) не подвергают
обезвоживанию на фильтр-прессе, а используют как литейный шликер после
вакуумировки.
При приготовлении масс, предназначенных для изготовления изделий
методом прессования, коржи с добавкой отходов формовочной массы подвергают
сушке и дроблению. Затем масса просеивается, пропускается через магнитный
сепаратор, вводятся связующие
|