Расчет элементов высокочастотной коррекции усилительных каскадов на биполярных транзисторах - Радиоэлектроника - Скачать бесплатно
Министерство образования Российской Федерации
ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ
(ТУСУР)
Кафедра радиоэлектроники и защиты информации (РЗИ)
УТВЕРЖДАЮ
Заведующий кафедрой РЗИ
доктор технических наук, профессор
________________В.Н. Ильюшенко
____ _____________________2002 г.
РАСЧЕТ ЭЛЕМЕНТОВ ВЫСОКОЧАСТОТНОЙ КОРРЕКЦИИ УСИЛИТЕЛЬНЫХ КАСКАДОВ НА
БИПОЛЯРНЫХ ТРАНЗИСТОРАХ
Учебно-методическое пособие по курсовому проектированию
для студентов радиотехнических специальностей
Разработчик:
доцент кафедры РЗИ
кандидат технических наук
_______________А.А. Титов;
Томск – 2002
УДК 621.396
Рецензент: А.С. Красько, старший преподаватель кафедры
Радиоэлектроники и защиты информации Томского государственного
университета систем управления и радиоэлектроники.
Титов А.А.
Расчет элементов высокочастотной коррекции усилительных каскадов на
биполярных транзисторах: Учебно-методическое пособие по курсовому
проектированию для студентов радиотехнических специальностей. – Томск:
Томск. гос. ун-т систем управления и радиоэлектроники, 2002. – 47 с.
Пособие содержит описание одиннадцати различных схемных решений
построения усилительных каскадов с коррекцией амплитудно-частотной
характеристики, формулы для расчета значений элементов высокочастотной
коррекции, расчета коэффициента усиления и полосы пропускания
рассматриваемых каскадов.
© Томский гос. ун-т систем
управления и радиоэлектроники, 2002
©Титов А.А., 2002
Содержание
Введение…………………………………………………………………..…….…4
1. Исходные данные для расчетов……………………………………………...5
2. Расчет некорректированного каскада с общим эмиттером…………….….7
1. Оконечный каскад…………………………………………...…..7
2. Промежуточный каскад………………………………...……….9
2. Расчет каскада с высокочастотной индуктивной коррекцией…………....10
1. Оконечный каскад…………………………………………..….10
2. Промежуточный каскад………………………………………..11
3. Расчет каскада с эмиттерной коррекцией……………………...………..…13
1. Оконечный каскад…………………………………………..….13
2. Промежуточный каскад………………………………………..15
4. Коррекция искажений вносимых входной цепью………………………....17
1. Расчет искажений вносимых входной цепью……………..….17
2. Расчет входной корректирующей цепи…………………….....18
3. Расчет каскада с параллельной ООС…...……………………..20
5. Согласованные каскады с обратными связями……………………………23
1. Расчет каскада с комбинированной ООС……………..……...23
2. Расчет каскадов с перекрестными ООС………………………25
3. Расчет каскада со сложением напряжений……………………27
6. Расчет каскадов с четырехполюсными корректирующими цепями...…....29
1. Расчет выходной корректирующей цепи ……………..……...30
2. Расчет каскада с реактивной межкаскадной
корректирующей цепью третьего порядка……………………32
3. Расчет каскада с заданным наклоном АЧХ…………………...35
7. Расчет усилителей с частотным разделением каналов……………………41
8. Список использованных источников………………………………………43
ВВЕДЕНИЕ
Расчет элементов высокочастотной коррекции является неотъемлемой
частью процесса проектирования усилительных устройств, как одного из
классов аналоговых электронных устройств. В известной учебной и научной
литературе материал, посвященный этой проблеме, не всегда представлен в
удобном для проектирования виде. К тому же в теории усилителей нет
достаточно обоснованных доказательств преимущества использования того либо
иного схемного решения при разработке конкретного усилительного устройства.
В этой связи проектирование широкополосных усилителей во многом основано на
интуиции и опыте разработчика. При этом, разные разработчики, чаще всего,
по-разному решают поставленные перед ними задачи, достигая требуемых
результатов. В этой связи в данном пособии собраны наиболее известные и
эффективные схемные решения построения широкополосных усилительных
устройств на биполярных транзисторах, а соотношения для расчета
коэффициента усиления, полосы пропускания и значений элементов
высокочастотной коррекции даны без выводов. Ссылки на литературу позволяют
найти, при необходимости, доказательства справедливости приведенных
соотношений. Поскольку, как правило, широкополосные усилители работают в
стандартном 50 либо 75-омном тракте, соотношения для расчета даны исходя из
условий, что оконечные каскады усилителей работают на чисто резистивную
нагрузку, а входные каскады усилителей работают от чисто резистивного
сопротивления генератора.
1. ИСХОДНЫЕ ДАННЫЕ ДЛЯ РАСЧЕТА
В соответствии с [1, 2, 3], приведенные ниже соотношения для расчета
усилительных каскадов основаны на использовании эквивалентной схемы
замещения транзистора, приведенной на рис. 1.1, либо на использовании его
однонаправленной модели, приведенной на рис. 1.2.
[pic]
Рис. 1.1. Эквивалентная схема Джиаколетто
[pic]
Рис. 1.2. Однонаправленная модель
Значения элементов схемы Джиаколетто могут быть рассчитаны по
паспортным данным транзистора по следующим формулам [1]:
[pic];
[pic];
[pic];
[pic];
[pic];
[pic];
[pic],
где [pic] - емкость коллекторного перехода;
[pic] - постоянная времени цепи обратной связи;
[pic] - статический коэффициент передачи тока в схеме с общим
эмиттером;
[pic] - граничная частота коэффициента передачи тока в схеме с общим
эмиттером;
[pic] - ток эмиттера в рабочей точке в миллиамперах;
[pic]=3 - для планарных кремниевых транзисторов;
[pic]=4 - для остальных транзисторов.
В справочной литературе значения [pic] и [pic] часто приводятся
измеренными при различных значениях напряжения коллектор-эмиттер [pic].
Поэтому при расчетах [pic] значение [pic] следует пересчитать по формуле
[1]
[pic],
где [pic] - напряжение [pic], при котором производилось измерение [pic];
[pic] - напряжение [pic], при котором производилось измерение [pic].
Поскольку [pic] и [pic] оказываются много меньше проводимости нагрузки
усилительных каскадов, в расчетах они обычно не учитываются.
Значения элементов схемы замещения, приведенной на рис. 1.2, могут быть
рассчитаны по следующим формулам [3, 4]:
[pic];
[pic];
[pic];
[pic],
где [pic], [pic] - индуктивности выводов базы и эмиттера;
[pic] - максимально допустимое постоянное напряжение коллектор-
эмиттер;
[pic] - максимально допустимый постоянный ток коллектора.
При расчетах по эквивалентной схеме приведенной на рис. 1.2, вместо
[pic] используют параметр [pic] - коэффициент усиления транзистора по
мощности в режиме двухстороннего согласования [2], равный:
[pic], (1.1)
где [pic]=[pic] - круговая частота, на которой коэффициент усиления
транзистора по мощности в режиме двухстороннего согласования равен
единице;
[pic] - текущая круговая частота.
Формула (1.1) и однонаправленная модель (рис. 1.2) справедливы для
области рабочих частот выше [pic][5].
2. РАСЧЕТ НЕКОРРЕКТИРОВАННОГО КАСКАДА С ОБЩИМ ЭМИТТЕРОМ
2.1. ОКОНЕЧНЫЙ КАСКАД
Принципиальная схема оконечного некорректированного усилительного
каскада приведена на рис. 2.1,а, эквивалентная схема по переменному току -
на рис. 2.1,б, где [pic] - разделительный конденсатор, [pic] - резисторы
базового делителя, [pic] - резистор термостабилизации, [pic] -
блокировочный конденсатор, [pic] - сопротивление в цепи коллектора, [pic] -
сопротивление нагрузки.
При отсутствии реактивности нагрузки, полоса пропускания каскада
определяется параметрами транзистора. В соответствии с [1] коэффициент
усиления каскада в области верхних частот можно описать выражением:
[pic],
где [pic];
[pic] - текущая круговая частота;
[pic]; (2.1)
[pic]; (2.2)
[pic]; (2.3)
[pic]; (2.4)
[pic].
[pic]
а) б)
Рис. 2.1
При заданном уровне частотных искажений [pic], верхняя граничная
частота [pic] полосы пропускания каскада равна:
[pic]=[pic]. (2.5)
Входное сопротивление каскада может быть аппроксимировано параллельной
RC цепью [1]:
[pic]; (2.6)
[pic]. (2.7)
Пример 2.1. Рассчитать [pic], [pic], [pic], [pic] каскада,
приведенного на рис. 2.1, при использовании транзистора КТ610А [6]([pic]= 5
Ом, [pic]= 1 Ом, [pic]= 0,0083 Сим, [pic]= 4 пФ, [pic]=160 пФ, [pic]= 1
ГГц, [pic]=120, [pic]=0,95 А/В, [pic]= 0,99, [pic]= 55 мА), и условий:
[pic]= 50 Ом; [pic]= 0,9; [pic]= 10.
Решение. При известных [pic] и [pic], в соответствии с (2.1), имеем:
[pic]= 10,5 Ом. Зная [pic], находим: [pic]= 13,3 Ом. По формуле (2.2)
определим: [pic]= 1,03(10-9с. Подставляя известные [pic] и [pic] в
соотношение (2.5) получим: [pic]= 74,9 МГц. По формулам (2.6) и (2.7)
определим [pic]= 196 пФ, [pic]= 126 Ом.
2.2. ПРОМЕЖУТОЧНЫЙ КАСКАД
Принципиальная схема каскада приведена на рис. 2.2,а, эквивалентная
схема по переменному току - на рис. 2.2,б.
[pic]
а) б)
Рис. 2.2
В соответствии с [1] коэффициент усиления каскада в области верхних
частот описывается выражением:
[pic],
где [pic]; (2.8)
[pic]; (2.9)
[pic]; (2.10)
[pic] – входное сопротивление и входная емкость нагружающего каскада.
Значения [pic], входное сопротивление и входная емкость каскада
рассчитываются по формулам (2.5), (2.6), (2.7).
Пример 2.2. Рассчитать [pic], [pic], [pic], [pic] каскада,
приведенного на рис. 2.2, при использовании транзистора КТ610А (данные
транзистора приведены в примере 2.1) и условий: [pic]= 0,9; [pic]= 10;
[pic], [pic] нагружающего каскада - из примера 2.1.
Решение. По известным [pic] и [pic] из (2.8) получим: [pic]= 10.5 Ом.
Зная [pic] из (2.10) найдем: [pic]= 11,5 Ом. По формуле (2.9) определим:
[pic]= 3(10-9 с. Подставляя известные [pic], [pic] в соотношение (2.5)
получим [pic]= 25,5 МГц. По формулам (2.6) и (2.7) определим [pic]= 126 Ом,
[pic]= 196 пФ.
3. РАСЧЕТ КАСКАДА С ВЫСОКОЧАСТОТНОЙ ИНДУКТИВНОЙ КОРРЕКЦИЕЙ
3.1. ОКОНЕЧНЫЙ КАСКАД
Принципиальная схема каскада с высокочастотной индуктивной коррекцией
приведена на рис. 3.1,а, эквивалентная схема по переменному току - на рис.
3.1,б.
[pic]
а) б)
Рис. 3.1
При отсутствии реактивности нагрузки высокочастотная индуктивная
коррекция вводится для коррекции искажений АЧХ вносимых транзистором.
Корректирующий эффект в схеме достигается за счет возрастания сопротивления
коллекторной цепи с ростом частоты усиливаемого сигнала и компенсации,
благодаря этому, шунтирующего действия выходной емкости транзистора.
В соответствии с [1] коэффициент усиления каскада в области верхних
частот, при оптимальном значении [pic]равном:
[pic], (3.1)
описывается выражением:
[pic],
где [pic]; (3.2)
[pic]; (3.3)
[pic]; (3.4)
[pic]; (3.5)
[pic] и [pic]рассчитываются по (2.3) и (2.4).
При заданном значении [pic], [pic] каскада равна:
[pic]=[pic]. (3.6)
Значения [pic], [pic] каскада рассчитываются по формулам (2.6), (2.7).
Пример 3.1. Рассчитать [pic], [pic], [pic], [pic], [pic] каскада с ВЧ
индуктивной коррекцией, схема которого приведена на рисунке 3.1, при
использовании транзистора КТ610А (данные транзистора приведены в примере
2.1) и условий [pic]= 50 Ом; [pic]= 0,9; [pic]= 10.
Решение. По известным [pic] и [pic] из (3.2) получим [pic]= 10,5 Ом.
Зная [pic] из (3.3) найдем [pic]= 13,3 Ом. Рассчитывая [pic] по (3.5) и
подставляя в (3.1) получим [pic]= 13,7(10-9 Гн. Определяя (к по (3.4) и
подставляя в (3.6) определим [pic]= 350 МГц. По формулам (2.6), (2.7)
найдем [pic]= 196 пФ, [pic]= 126 Ом.
3.2. ПРОМЕЖУТОЧНЫЙ КАСКАД
Принципиальная схема промежуточного каскада с высокочастотной
индуктивной коррекцией приведена на рис. 3.2,а, эквивалентная схема по
переменному току - на рис. 3.2,б.
[pic]
а) б)
Рис. 3.2
В соответствии с [1] коэффициент усиления каскада в области верхних
частот, при оптимальном значении [pic] равном:
[pic], (3.7)
определяется выражением:
[pic],
где [pic];
|