Классификация сейсмических сигналов на основе нейросетевых технологий - Кибернетика - Скачать бесплатно
предположить, что существует
неявная зависимость между матрицей начальных весовых коэффициентов и
конкретной реализацией выборки данных, предназначенной для обучения
нейронной сети, то можно объяснить те случаи, когда результат несколько
хуже, чем в большинстве экспериментов. Возможно, реализация алгоритма
учитывающего распределение исходных данных позволит получать более
стабильные результаты.
. Для этих же сетей можно использовать другие методы обучения, позволяющих
с большей вероятностью находить глобальный минимум функции ошибки.
. Исследование других парадигм и разработка специальной модели,
предназначенной конкретно для решения данной задачи могут привести к
улучшению полученных результатов.
Список литературы.
1. Уоссермен Ф. “Нейрокомпьютерная техника” - М.: Мир,1992.
2. Горбань А.Н., Дубинин-БарковскийВ.Л., Кирдин А.Н. “Нейроинформатика” СП
“Наука” РАН 1998.
3. Горбань А.Н., Россиев Д.А. “Нейронные сети на персональном компьютере”
СП “Наука” РАН 1996.
4. Ежов А.А., Шумский С.А. “Нейрокомпьютинг и его применение в экономике и
бизнесе”.1998.
5. Bishop C.M. “Neural Networks and Pattern Recognition.” Oxford Press.
1995.
6. Goldberg D. “Genetic Algorithms in Machine Learning, Optimization, and
Search.” – Addison-Wesley,1988.
7. Fausett L.V. “Fundamentals of Neural Networks: Architectures, Algorithms
and Applications”, Prentice Hall, 1994.
8. Kohonen T. “Self-organization and Associative Memory”, Berlin: Springer-
Verlag, 1989.
9. Kushnir A.F., Haikin L.M., Troitsky E.V. “Physics of the earth and
planetary interiors” 1998.
10. Копосов А.И., Щербаков И.Б., Кисленко Н.А., Кисленко О.П., Варивода
Ю.В. Отчет по научно-исследовательской работе "Создание аналитического
обзора информационных источников по применению нейронных сетей для задач
газовой технологии"; и др., ВНИИГАЗ, 1995, www.neuralbench.ru
11. Fukunaga K., Kessel D.L., “Estimation of classification error”, IEEE
Trans. Comp. C 20, 136-143. 1971.
12. Деев А.Д., “Применение статистического дискриминационного анализа и его
ассимптотического расширения для сравнения различных размерностей
пространства.”, РАН 195, 759-762. 1970.
Приложение.
1. Пример выборки сейсмограмм.
В левом столбце представлены сейсмограммы, описывающие взрывы, а в
правом – землетрясения.
2. Пример файла с векторами признаков.
Представлена выборка из файла 9_Norv.txt, содержащего 9 размерные вектора
признаков.
NumOfPattern: 86
PatternDimens: 9
1 -14.3104 -13.2561 -13.4705 -13.4306 -14.1015 -13.3503 -13.3805
-13.7369 -0.3494 0
2 -14.6881 -13.6349 -12.9050 -13.4323 -14.2279 -13.4720 -13.2117
-13.5791 -1.2801 0
3 -14.4036 -14.1745 -13.8014 -12.7209 -14.6283 -13.9589 -13.4649
-12.9716 -0.8250 0
…
55 -14.3693 -13.4362 -11.4072 -12.3129 -14.8612 -13.3480 -12.8517
-13.4014 -0.7738 0
56 -14.2856 -12.6858 -13.8215 -13.4282 -14.0982 -13.1587 -13.2792
-13.7852 -1.3442 0
57 -14.4822 -13.1141 -13.7787 -13.4466 -13.6761 -13.2969 -13.6033
-13.9252 -0.6642 1
58 -13.5522 -13.1302 -13.5444 -14.1471 -13.2994 -13.2368 -13.9776
-14.4295 -0.9973 1
59 -14.8524 -11.9846 -13.7231 -14.2496 -13.4809 -13.0515 -13.8950
-14.3923 -1.8284 1
…
85 -14.5994 -13.6920 -12.8539 -13.7629 -14.1699 -13.2075 -13.3422
-13.6788 -11.9537 1
86 -14.3821 -13.6093 -12.8677 -13.7788 -14.1260 -13.3246 -13.2966
-13.6453 -11.4304 1
3. Файл с настройками программы
#
# Common parameters for programm "NVCLASS"
#
# # # # # # # # # # # # # # # # # # # #
# 1_1 - OnlyTest mode , 1_2 - TestAfterLearn mode,
# 2_1 - CheckOneVector , 2_2 - CrossValidation mode.
#
TYPE=2_2
NDATA=9
NPATTERN=86
PatternFile=9_Norv.txt
NTEST=10
TestVector=vector.tst
NetworkFile=9.net
ResNetFname=9.net
NumberVector=57
ReportFile=Report.txt
Debug=Yes
#
# Next parameters was define in result experiments and if you will
# change it, the any characteristics of Neural Net may be not optimal
# (since may be better then optimal).
#
# # # # # # # # # # #
# 'NetStructure' must be: [NDATA,NUNIT1,1] (NOUT=1 always)
# value 'AUTO'-'NetStructure' will be define the programm.(See help).
# example : [18,9,1], or [18,18,1], or [9,9,5,1]
NetStructure=[18,12,1]
# may be: [Gauss] or [Random]
InitWeigthFunc=Gauss
Constant=3
Alfa=0
Sigma=1.5
Widrow=No
Shuffle=Yes
Scaling=Yes
LearnTolerance=0.1
Eta=1
MaxLearnCycles=50
Loop=3
#end of list
4. Пример файла отчета.
NVCLASS report - Wed Jun 02 15:58:02 1999
Type = 1_2
Neural Net - <18,12,1>
PatternFile - vect.txt
Test Vector(s) - vector.tst
ResNetFname - 12.net
LearnTolerance = 0.10
InitialWeigthFunc = Gauss[ 0.0, 1.5]
< Loop 1 >
Learning cycle result:
NumIter = 5
NumLE = 3
Error vector(s): 58, 59, 63,
+-----+------+--------+------+
| N | ID | Result |Target|
+-----+------+--------+------+
| 1 | 24 | 0.1064 | 0 |
| 2 | 25 | 0.9158 | 1 |
| 3 | 26 | 0.0452 | 0 |
| 4 | 27 | 0.0602 | 0 |
| 5 | 28 | 0.0348 | 0 |
| 6 | 29 | 0.0844 | 0 |
| 7 | 30 | 0.1091 | 0 |
| 8 | 31 | 0.0821 | 0 |
| 9 | 32 | 0.0298 | 0 |
| 10 | 33 | 0.2210 | 0 |
+-----+------+--------+------+
< Loop 2 >
Learning cycle result:
NumIter = 5
NumLE = 5
Error vector(s): 33, 34, 55, 58, 63,
+-----+------+--------+------+
| N | ID | Result |Target|
+-----+------+--------+------+
| 1 | 24 | 0.1279 | 0 |
| 2 | 25 | 0.9929 | 1 |
| 3 | 26 | 0.0960 | 0 |
| 4 | 27 | 0.1463 | 0 |
| 5 | 28 | 0.1238 | 0 |
| 6 | 29 | 0.1320 | 0 |
| 7 | 30 | 0.1478 | 0 |
| 8 | 31 | 0.1235 | 0 |
| 9 | 32 | 0.0740 | 0 |
| 10 | 33 | 0.5140 | 1 |
+-----+------+--------+------+
5. Файл описания функций, типов переменных и используемых библиотек
“nvclass.h”.
/*
* --- Neuro classificator---
*
* Common defines
*/
#include
#include
#include
#include
#include
#include
#include
//#include
//#include
#include
#define DefName "nvclass.inp"
#define MAXDEF 100
#define MAXLINE 256
#define NMAXPAT 100
#define NMXINP 20
#define NMXUNIT 20
#define CONT 0
#define EXIT_OK 1
#define EXIT_CNT 2
#define RESTART 911
#define MAXEXP 700 /* Max arg exp(arg) without error 'OVERFLOW'
*/
#define Random 10
#define Gauss 20
#define OK 0
#define Error 1
#define Yes 77
#define No 78
#define Min 0 /* Find_MinMax(...) */
#define Max 1
#define TYPE_ONE 21
#define TYPE_TWO 22
#define TYPE_THREE 23
#define TYPE_FOUR 24
int NDATA = 0;
int NUNIT1 = 0;
int NUNIT2 = 0;
int NUNIT3 = 0;
int NOUT = 1;
int NPATTERN = 0; /* Number of input pattern*/
int NWORK = 0; /* Number of work pattern*/
int NTEST= 0; /* Number of test pattern*/
int result;
int STOP = 0;
int NumOut = 250; /* Number of itteration, after which show result in
debugfile. */
int Num_Iter=10;/* The parameters requred in the procecc of */
float Percent=0.25; /* dinamic lerning with change 'eta' */
float LearnTolerance = 0.10;
float TestTolerance = 0.5;
float MAX_ERR=0.00001; /* min error */
float eta = 1.0; /* learning coefficient*/
float MIN_ETA=0.000001;
float **Array_MinMax;
int *Cur_Number;
float W1[NMXINP][NMXUNIT];
float W2[NMXUNIT];
float PromW1[NMXINP][NMXUNIT];
float PromW2[NMXUNIT];
float PromW1_OLD[NMXINP][NMXUNIT];
float PromW2_OLD[NMXUNIT];
float Err1[NMXUNIT];
float Err2;
float OLD_ERROR;
float GL_Error=0.0;
float Out1[NMXUNIT];
float Out2;
char NetStr[20]="Auto"; /* String with pattern of Net Structure*/
int Type = TYPE_THREE; /* Enter the mode of work of programm */
int InitFunc = Random; /* Random [=10] weigth will RandomDistribution
Gauss [=20] - ... GaussianDistributon */
float Constant = 1; /* RandomDistribution [-Constant,Constant]*/
float Alfa = 0; /* GaussianDistribution [Alfa,Sigma]*/
float Sigma = 1; /* ... */
int Widrow = No; /* Nguyen-Widrow initialization start weigth*/
int Loop = 1; /* Number repeat of Learning cycle */
char *PatternFile; /* File with input patterns*/
char *TestVector;
char *ReportFile="report.txt"; /* name of report file */
char *NetworkFile; /* Name of input NetConfig file */
char *ResNetFname; /* Name of output NetConfig file */
int DEBUG = Yes; /* if 'Yes' then debug info in the DebugFile
*/
char *DebugFile="Logfile.log"; /* Name of the debug file*/
int NumberVector = 0; /* Number of TEST vector */
int Shuffle = Yes; /* Flag - shuffle the input vectors*/
int Scaling = Yes; /* Scaling input vector */
int MaxLearnCycles = 1999; /* Max number of learning iteration */
FILE *Dfp; /* Debug file pointer */
FILE *Rfp; /* Report file pointer*/
typedef struct Pattern {
int ID; /* ID number this vector in all set of pattern */
float *A; /* pattern (vector) A={a[0],a[1],...,a[NDATA]} */
float Target; /* class which this vector is present*/
} PAT;
PAT *Input;
PAT *Work;
PAT *Test;
/* lines in defaults file are in the form "NAME=value" */
typedef struct Default {
char *name; /* name of the default */
char *value; /* value of the default */
} DEF;
/* structure of statistics info about one test vector */
typedef struct Statistic {
int ID; /* Primery number from input file */
float Target;
float TotalRes; /* Total propability */
int Flag; /* Flag = 1, if vector was error and = 0
in over case */
float *result; /* Result of testing vector on current
iteration */
int *TmpFlag; /* analog 'Flag' on current itteration */
int *NumIter; /* Number iteration of learning on which
Learning cycle STOPED */
int **NumLE; /* Error vectors after cycle of learning
was test*/
} STAT;
/* structure of the some result of learning cycle */
typedef struct ResLearning {
int NumIter;
int LearnError[NMAXPAT+1]; /* A[0]-count of error,
A[1]-ID1,
A[2]-ID2,...
A[NMAXRL]-ID?.*/
} RL;
/* function prototypes */
void OnlyTestVector(void);
void TestAfterLearn (void);
void CheckOneVector ( void );
void CrossValidation ( void );
DEF **defbuild(char *filename);
DEF *defread(FILE *fp);
FILE *defopen (char *filename);
char *defvalue(DEF **deflist, const char *name);
int defclose(FILE *fp);
void defdestroy(DEF **, int);
void getvalues(void);
void Debug (char *fmt, ...);
void Report (char *fmt, ...);
void Widrow_Init(void);
int Init_W( void );
float RavnRaspr(float A, float B);
float NormRaspr(float B,float A);
void ShufflePat(int *INP,int Koll_El);
float F_Act(float x);
float Forward (PAT src);
int LearnFunc (void);
int Reset (float ResErr, int Cnt, int N_Err);
void Update_Last (int n, float Total_Out);
void Update_Prom1 (int n);
void Prom_to_W (void);
void Update_All_W (int num, float err_cur );
void Init_PromW(void);
void Prom_to_OLD(void);
int CheckVector(float Res, PAT src);
int *TestLearn(int *src);
RL FurtherLearning(int NumIteration,
float StartLearnTolerans,
float EndLearnTolerans,
RL src);
STAT *definestat (PAT src);
STAT **DefineAllStat (PAT *src,int Num);
void FillStatForm (STAT *st, int iteration, float res, RL lr);
void FillSimpleStatForm (STAT *st, float res);
void destroystat ( STAT *st, int param);
void DestroyAllStat (STAT **st, int Num);
void PrintStatHeader(void);
void printstat(STAT *st);
void PrintStatLearn(RL src);
void PrintTestStat(STAT **st, int len);
void PrintErrorStat (STAT **st,int Len);
int DefineNetStructure (char *ptr);
void getStructure(char buf[20]);
PAT patcpy (PAT dest, PAT src);
PAT* LocPatMemory(int num);
void ReadPattern (PAT *input, char *name,int Len);
void FreePatMemory(PAT* src, int num);
void ShowPattern (char *fname, PAT *src, int len);
void ShowVector(char *fname,PAT src);
float getPatTarget (float res);
PAT* DataOrder (PAT* src,int Len, int Ubit, PAT* dest, PAT* test);
void FindMinMax (PAT *src,int Dimens, int Num_elem, float **Out_Array);
void ConvX_AB_01(PAT src);
int *DefineCN (int len);
int getPosition (int Num, int *src, int Len);
void DestroyCN (int *src);
void ShowCurN (int LEN);
float **LocateMemAMM(void);
void FreeAMM (float **src);
void WriteHeaderNet(char *fname, float **src);
void WriteNet (char *fname,int It);
void ReadHeaderNet(char *fname, float **src);
int ReadNet (char *fname, int It);
FILE *OpenFile(char *name);
int CloseFile(FILE *fp);
/* End of common file */
6. Файл автоматической компиляции программы под Unix -“Makefile”.
CC= cc
LIBS= -lm
OBJ= nvclass.o
nvclass: $(OBJ)
$(CC) -o nvclass $(LIBS) $(OBJ)
nvclass.o: nvclass.c
7. Основной модуль - “nvclass.с”
/*
* Neuron Classificator ver 1.0
*/
#include "common.h"
/* =========================
* MAIN MODULE
* =========================
*/
void main (int argc, char *argv[])
{ int i;
char buf[MAXLINE], PrName[20], *ptr;
time_t tim;
time(&tim);
/* UNIX Module */
Dfp = OpenFile(DebugFile);
strcpy(buf,argv[0]);
ptr = strrchr(buf,'/');
ptr++;
strcpy(PrName,ptr);
Debug ("nn'%s' - Started %s",PrName,ctime(&tim));
getvalues();
Rfp = OpenFile(ReportFile);
DefineNetStructure(NetStr); /* NetStr string from input file */
getStructure(buf);
Debug ("nNeyral net %s",buf);
Input = LocPatMemory(NPATTERN);
Work = LocPatMemory(NPATTERN);
Array_MinMax = LocateMemAMM();
Cur_Number = DefineCN (NPATTERN);
printf("nMetka - 1");
if (Type == TYPE_ONE)
OnlyTestVector ();
if (Type == TYPE_TWO)
TestAfterLearn ();
if (Type == TYPE_THREE)
CheckOneVector ();
if (Type == TYPE_FOUR)
CrossValidation();
time(&tim);
Debug ("nn%s - Normal Stoped %s",PrName,ctime(&tim));
CloseFile(Dfp);
CloseFile(Rfp);
FreeAMM (Array_MinMax);
DestroyCN (Cur_Number);
FreePatMemory(Input,NPATTERN);
FreePatMemory(Work, NPATTERN);
}
/*
* ^OnlyTestVectors - read net from (NetworkFile) and test the
TestVector(s)
*/
void OnlyTestVector(void)
{ char buf[MAXLINE+1];
STAT **st, *stat;
int i,j;
float Res;
Debug ("nOnlyTestVector proc start");
Debug ("n NPATTERN = %d",NPATTERN);
Debug ("n NTEST = %d",NTEST);
Test = LocPatMemory(NTEST);
ReadPattern(Test,TestVector, NTEST);
/* ShowPattern ("1.tst",Test,NTEST);*/
PrintStatHeader();
st = DefineAllStat (Test,NTEST);
ReadHeaderNet(NetworkFile,Array_MinMax);
if (Scaling == Yes)
{ for (i=0;i< Loop ; i++)
{ Debug("n----/ STEP = %d /-----",i+1);
Report("n < Loop %d > ",i+1);
ReadNet(NetworkFile,i+1);
for (j=0;j< Len; i++)
{fscanf(DataFile,"%d",&id);
Ptr.ID = id;
for (j=0; j < NDATA; j++)
{ fscanf (DataFile,"%f",&tmp);
Ptr.A[j]=tmp;
}
if ( Flag )
tmp = -1;
else
fscanf(DataFile,"%f",&tmp);
Ptr.Target = tmp;
input[i]=patcpy(input[i],Ptr);
}
fclose(DataFile);
}
/*
* ^LocPatMemory - locate memory for (PAT *)
*/
PAT* LocPatMemory(int num)
{ int i;
PAT *src;
src = (PAT *) malloc (num * sizeof(PAT));
for (i=0; i< num; i++)
{src[i].ID = -1;
src[i].A = (float*) malloc (NDATA * sizeof(float));
src[i].Target = -1.0;
}
return (src);
}
void FreePatMemory( PAT* src, int num )
{ int i;
for (i=0;i x/32768
* -> x from [0,1]
*/
float RavnRaspr(float A, float B)
{float x;
x = (B-A)*rand()/(RAND_MAX+1.0) + A;
return x;
}
float NormRaspr(float A,float B)
{ float mat_ogidanie=A, Sigma=B;
float Sumx=0.0, x;
int i;
for (i=0;i<12;i++)
Sumx = Sumx + RavnRaspr(0,1); /* from R[0,1] -> N[a,sigma]*/
x = Sigma*(Sumx-6) + mat_ogidanie;
return x;
}
int Init_W ( void )
{ int i,j;
float A, B;
time_t t,t1;
t = time(NULL);
t1=t;
/* restart random generator*/
while (t==t1)
srand((unsigned) time(&t));
if (InitFunc == Random)
{ A = -Constant;
B = Constant;
Debug ("nInit_W () --- Start (%ld))",t);
Debug ("n InitFunc=Random[%4.2f,%4.2f]",A,B);
for(i=0; i<=NDATA; i++)
for(j=0; j<= NUNIT1; j++)
W2[j]=RavnRaspr(A,B);
}
if (InitFunc == Gauss)
{ A = Alfa;
B = Sigma;
Debug ("nInit_W () --- Start (%ld))",t);
Debug ("n InitFunc=Gauss[%4.2f,%4.2f]",A,B);
for(i=0; i<=NDATA; i++)
for(j=0; j<= NUNIT1; j++)
W2[j] = NormRaspr(A,B);
}
if ( Widrow == Yes )
Widrow_Init();
Debug ("nInit_W - sucsefull ");
return OK;
}
/* LearnFunc */
int LearnFunc (void)
{ int i, j, n, K, NumErr=0;
int num=0;
float err_cur=0.0, Res=0;
time_t tim;
float ep[NMAXPAT];
GL_Error=1.0;
time(&tim);
Debug ("nLearnFunc () --- Started");
Debug ("n eta
|