История развития атомной энергетики - Естествознание - Скачать бесплатно
Реферат
На тему: «Развитие атомной энергетики»
По КСЕ
Выполнено студентом
Новгородцевым Алексеем Анатольевичем
студенческий билет № 95/178-00n
группа № 1
дата выполнения 01.12.2000
Руководитель
Замотаев И. В.
Оглавление:
Введение. 2
Атомистика философов Древней Греции и Рима. 3
Атомистика в период до XVII в. 5
Физика в XVIII и XIX вв. 6
Атомистика конца XIX – начала XX в. 10
Атомистика первой половины XX в. 11
Атомистика в предвоенные годы. 18
Атомистика от послевоенных лет до наших дней. 23
Заключение. 24
Список литературы. 25
Введение.
В конце тысячелетия, когда общество все дальше продвигается по пути
техногенного развития, развиваются уже существующие и зарождаются новые
производственные отрасли, когда «высокие технологии» вошли практически в
каждый современный дом, и многие люди не могут представить жизни без них,
мы более отчетливо видим, неограниченность человеческих потребностей. Чем
больше человечество создает, тем большем оно потребляет. В том числе
такого важного ресурса, как энергии.
Человечество с древних времен искало новые источники энергии. К
середине XX столетия были освоены почти все ее природные источник, причем
использование их в промышленных масштабах привело к значительному
загрязнению отходами производства окружающей среды, особенно в крупных,
промышленно развитых городах.
Овладение же ядерной энергией – величайшее, ни с чем не соизмеримое
достижение науки и техники XX в. Высвобождение внутриядерной энергии атома,
проникновение в природные кладовые тайн вещества, атома превосходит все,
что когда-либо ранее удавалось сделать людям. Новый источник энергии
огромной мощности сулил богатейшие неоценимые возможности.
Для открытия такого вида энергии, как внутриядерная энергия атома,
понадобились долгие годы упорной и самоотверженной работы ученых многих
поколений и разных стран. Высвобождение внутриядерной энергии атома
потребовало такого уровня развития науки, такого научно-технического
оборудования, таких аппаратуры, химических материалов, такой высокой
культуры и техники производства, которые смогли сложиться в мире только к
середине XX столетия. Однако человечество должно было пройти долгий путь
поисков, преодолеть множество препятствий, отвергнуть прежние представления
о природе вещей.
Народы Азии и Африки в глубокой древности многое сделали для понимания
природных явлений и основных законов природы.
Древние цивилизации Китая, Индии, Вавилона, Египта, Греции заложили
фундамент, на котором возникло натурфилософское учение, теоретическое
мышление, преобразующее мифологию в эпос и формирующее при этом основные
принципы строения и превращения веществ.
Натурфилософские представления, возникшие в древнем мире, в строгом
смысле теоретическим мышлением становятся только в Греции.
В Индии атомистическая точка зрения была окрашена спиритуалистической
тенденцией одухотворения природы, чего нет в греческой атомистике,
поскольку греки развивали материалистический атомизм.
Греческая форма атомизма плодотворно повлияла на развитие науки.
Наиболее полно и в ясном изложении дошли до нас изустные и письменные
работы древних греков. Древние греки одними из первых стали изучать природу
с помощью методов (примитивных в нашем понимании), сформулированных в их
научных диспутах, лекциях. В Древней Греции человеческий разум осознавал
свою силу, и именно тогда начали появляться систематические научные
исследования.
Атомистика философов Древней Греции и Рима.
Характерные черты естествознания того времени – это накопление
эмпирического материала, попытки объяснить мир с помощью общих
умозрительных гипотез и теорий, в которых предсказывалось, предвосхищалось
немало позднейших научных открытий. К примеру, в ту эпоху зародились идеи
об атомарном, дискретном строении материи.
Древние греки создали учение о материальной первооснове всех вещей,
родоначальниками которого были Фалес Милетский (625-547 до н. э.),
Анаксимандр (610-547 до н. э.), Анаксимен (585-525 до н. э.) и другие
античные философы. С вершин нынешних знаний многое в их учении кажется
наивным. Так, Фалес считал, что основой всего является вода. Анаксимандр
усматривал такую основу в некоем «алейроне» – единой, вечной,
бескачественной материи, а Анаксимен – в воздухе. Все они представляли
первоначально существующего как нечто материальное.
Другой известный древнегреческий философ Гераклит Эфесский (530-470 до
н. э.) считал основой основ огонь. Все вещи появляются из огня и снова в
него возвращаются. Гераклит утверждал: «Мир единый, не создан никем из
богов и никем из людей, а был, есть и будет вечно живым огнем, закономерно
воспламеняющимся и закономерно угасающим».
Непосредственными предшественниками атомистов были Эмпедокл (490-430
до н. э.) и Анаксагор (500-428 до н. э.), они выдвинули концепцию
элементов, из которых построена Вселенная.
По учению Эмпедокла такими материальными элементами являются огонь,
воздух, вода и земля. Они вечны, неразрушимы, хотя и изменяются по числу и
величине путем соединения и разделения. Эмпедокл утверждал: «Ничто не может
произойти из ничего, и никак не может то, что есть, уничтожиться». Эта
мысль Эмпедокла очень близка к знакомому нам закону сохранения вещества,
который играет такую фундаментальную роль в современной физике.
Анаксагор считал, что мир состоит из бесконечного множества частиц
(«семян») веществ и в результате их совокупного движения темный холодный
воздух отделяется от светлого горячего эфира, а частицы соединяются с себе
подобными. Так образуются материальные тела. Следует обратить внимание на
высказывания Анаксагора об эфире. О нем впоследствии через ряд веков ученые
будут вести длительные споры, дискуссии.
Ученые Древней Греции за свои смелые идеи и высказывания подвергались
наказаниям и преследованиям. Так, Анаксагор был изгнан из Афин за
утверждение о том, что вопреки укоренившимся верованиям солнце, луна,
звезды являются лишь раскаленными камнями и не имеют божественной природы.
Философы Левкипп и его ученик Демокрит (460-370 до н. э.) стали
основателями атомистической теории. По учению Левкиппа материя состоит из
отдельных частиц – атомов, находящихся в пустом пространстве, и слишком
мелких, чтобы их можно было увидеть в отдельности. Атомы непрерывно
движутся в пространстве и воздействуют друг на друга при помощи толчков и
давления.
Более полно и стройно атомистическая теория была изложена великим
древнегреческим философом-материалистом Демокритом. Хотя им было написано
много сочинений по математике, физике, астрономии, медицине, филологии,
теории музыки и др., но из многочисленных его сочинений до нас дошло только
около 300 фрагментов.
В сочинениях Демокрита много сказано о душе, о человеческих
отношениях, о мышлении, об этике и другом, но нас в данном случае
интересуют только атомы, только материалистическое воззрение Демокрита.
Приведем некоторые принципиальные положения Демокрита, имеющие
отношение к атомистической теории:
1. Ничто не возникает из ничего и ничего не переходит в ничто.
2. Материя состоит из бесконечного числа мельчайших, неделимых частиц
– атомов.
3. Атомы вечны и неизменны, а все сложные тела, из них состоящие,
изменчивы и преходящи.
4. Не существует ничего, кроме атомов и «чистого» пространства.
5. Атомы вечно движутся. Движение всегда присуще атомам и происходит в
силу господства во Вселенной закона универсальной необходимости.
6. Атомы бесконечны по числу и бесконечно разнообразны по форме.
7. Во Вселенной существует бесконечное множество миров. Наш мир один
из них.
8. Различие между вещами связано с различием их атомов по числу,
величине, форме...
Естественно-научное мировоззрение древних получило свое развитие в
трудах знаменитого философа того времени Аристотеля (384-322 до н. э.). В
своем творчестве он охватил почти все существовавшие тогда отрасли знаний.
Хотя Аристотель критиковал своего учителя философа-идеалиста Платона (427-
347 до н. э.), он не был материалистом. Он признавал объективное
существование материального мира и его познаваемость, но противопоставлял
земной и небесный миры, верил и учил верить в существование божественных
сил.
Аристотель считал, что все космические тела состоят из эфира,
основного элемента природы, в котором изначально заложено совершенное
движение по кругу.
Естественный путь познания природы, учил Аристотель, идет от менее
известного и явного для нас к более явному и известному с точки зрения
природы вещей. Он рассматривал такие общие понятия, как материя и движение,
пространство и время, конечное и бесконечное.
В своей работе «Физика» Аристотель подробно разобрал взгляды своих
предшественников – Анаксагора, Левкиппа, Демокрита и др. Он резко
критиковал воззрения атомистов, признающих существование бесчисленного
множества атомов и миров. По Аристотелю реальный мир конечен, ограничен и
построен из «конечного числа» элементов. Понятие пустоты по Аристотелю
противоречит действительности. Бесконечное разреженное пустое пространство
ведет к бесконечному движению, а это, по мнению Аристотеля, невозможно.
«Канонизированное» учение Аристотеля в средние века надолго задержало
развитие атомистических воззрений. И все же учение об атомах, атомистика,
пройдя через многие века, выдержало ожесточенную борьбу и дошло до наших
дней с более глубокими представлениями об атоме, полученными в результате
огромного числа физико-химических экспериментов и исследований по физике
атома.
В Древнем Риме поэт и философ Тит Лукреций Кар (99-55 до н. э.) в
своей знаменитой поэме «О природе вещей» изложил атомистическое учение
греческого философа Эпикура.
Представитель афинской школы Эпикур (341-270 до н. э.), а за ним
Лукреций пытались существованием атомов объяснить все естественные и
социальные явления. Лукреций рисует модель движения атомов, уподобляя его
движению пылинок в солнечном луче в темной комнате. Это по существу одно из
первых в истории естественных наук описание молекулярного движения.
Созданная древними философами теория атомов совпадает с современными
концепциями только в самых общих чертах.
Гениальные догадки философов-материалистов, атомистов Древней Греции и
Рима предопределили рождение современной атомистической теории – физики
атома, ядерной физики. Мы и сегодня поражаемся изумительным научным
догадкам и идеям древних философов, основанным только на чисто
умозрительных предположениях почти без всяких экспериментальных
подтверждений. Это лишний раз доказывает, что возможностям человеческого
разума нет пределов. Экскурсом в древность мы хотели подчеркнуть, что
толчком к поискам энергии атомного ядра явился вывод древнегреческих и
других древних философов о том, что материя состоит из бесконечного числа
мельчайших неделимых частиц – атомов. Наука XIX и XX вв., непрерывно
обогащаясь новыми знаниями и идеями, подтверждаемыми научными
экспериментами и теориями, продвигалась вперед к познанию атома. Движение к
высвобождению внутриядерной энергии сопровождалось длительным, многовековым
накоплением знаний во многих отраслях науки.
Атомистика в период до XVII в.
В период средневековья атомистика переживала тяжелые времена. В
средние века господствовали схоластика, теология и открытия в науке были
спорадическими. И в те времена люди немало сделали, продвигаясь к вершинам
познания, но все же такого расцвета, как в Древней Греции и Риме, в странах
Западной Европы не наблюдалось.
Средневековый Восток имел более широкие, чем Западная Европа, связи со
многими близкими и далекими странами, что способствовало развитию
геометрии, алгебры, тригонометрии, медицины и других наук. Так, труды
Аристотеля, Птолемея и других пришли в Европу в переводах с арабского.
Арабы были как бы связующим звеном между античной и средневековой культурой
и наукой.
В 1121 г. в Средней Азии появился курс физики Аль-Хазини, в котором
были таблицы удельных весов ряда твердых и жидких тел. Много сделал
хорезмский ученый Бируни (973-1048) в опытах по определению удельной массы
веществ. В Бухаре жил знаменитый ученый философ Абу Али Ибн Сина
(Авиценна). В своих работах он, последователь учения Аристотеля и позднее
неоплатонизма, проповедовал вечность материи.
В середине XV в. в экономическом, политическом и культурном развитии
Европы начинают отчетливо проступать новые, самобытные черты.
Николай Коперник (1473-1543) сломал общепризнанную до того концепцию
мироздания, по которой Земля считалась неподвижной по отношению к Солнцу.
Коперник отбросил геоцентрическую систему Птолемея и создал
гелиоцентрическую систему мироздания. Возникнув в астрономии, она
распространилась и на физику, дав новый импульс развитию атомистических
идей. Атомы неощутимы, считал Коперник, несколько атомов не составляют
видимого тела. И все же число этих частиц можно так умножить, что их будет
достаточно для слияния в заметное тело. Коперник вплотную подошел к
материалистической атомистике. В эпоху Возрождения физические наблюдения и
опыты еще не носили систематического характера, хотя и были достаточно
широко развиты.
Началу использования в физике экспериментального метода положил
Галилео Галилей (1564-1642), итальянский физик, механик, астроном, один из
основателей естествознания. Его влияние на развитие механики, оптики,
астрономии неоценимо. Основа мировоззрения Галилея – признание объективного
существования мира, т. е. существования вне и независимо от человеческого
сознания. Галилей считал, что мир бесконечен, материя вечна. Материя
состоит из абсолютно неделимых атомов, ее движение – единственное,
универсальное механическое перемещение. Галилей экспериментально подтвердил
ряд гипотез древних философов об атомах. В своих трудах он поддержал
гелиоцентрическую систему мироздания, за что жестоко пострадал от
католической инквизиции.
Научная деятельность Галилея, его огромной важности открытия, научная
смелость имели решающее значение для утверждения гелиоцентрической системы
мира.
Научные открытия и наследие великого английского ученого Исаака
Ньютона (1643-1727) относятся к трем основным областям: математике,
механике и астрономии. Ньютон вошел в историю как подлинный корифей науки,
его основные труды и сейчас не утратили своего значения, хотя время и
вносит коррективы в некоторые их разделы. Первый ощутимый удар по учению
Ньютона нанесла теория электромагнитного поля Дж. Максвелла (1831-1879),
основателя классической электродинамики и статистической физики.
Утверждение современной физики было подготовлено открытием рентгеновских
лучей, радиоактивности элементов и их взаимных превращений, теорией
относительности Эйнштейна, квантовой теорией и др. И все же это ни в коей
мере не умаляет огромного значения для науки классических работ И. Ньютона.
Физика в XVIII и XIX вв.
В XVIII и XIX вв. классическая физика вступила в период, когда многие
ее положения стали подвергаться серьезному переосмыслению. В 1746 г. М. В.
Ломоносов (1711-1765) писал: «Мы живем в такое время, в которое науки после
своего возобновления в Европе возрастают и к совершенству приходят».
Михаил Ломоносов – первый русский профессор химии, автор первого
русского курса физической химии. В области физики он оставил нам ряд важных
работ по кинетической теории газов, теории теплоты, оптике и др.
Рассматривая основу химических явлений» Ломоносов на базе атомно-
молекулярных представлений развивал учение о «нечувствительных» (т. е.
неощутимых) частицах материи – «корпускулах» (молекулах). Он полагал, что
всем свойствам вещества можно дать исчерпывающее объяснение с помощью
представления о различных чисто механических движениях корпускул, состоящих
из атомов. Он утверждал, что химическая теория должна строиться на законах
механики и математики.
В химических работах Ломоносова важную роль играет атомистика, она –
краеугольный камень его научного мышления. Ломоносов дал свою формулировку
принципа сохранения материи и движения: «...все перемены, в натуре
случающиеся, такого суть состояния, что сколько чего у одного тела
отнимается, столько присовокупится к другому... Сей всеобщий естественный
закон простирается и в самые правила движения, ибо тело, движущее своею
силою другое, столько же оныя у себя теряет, сколько сообщает другому,
которое от него движение получает...»
Введение понятия «корпускулы» наряду с понятием «элемента» (атома)
означало признание того, что определенная совокупность атомов создает новое
единство, действующее как целое, некий новый качественный «узел». Это была
перспективная идея, ибо только через естествознание человечество могло
прийти к идее развития, образования сложных форм вещества из соединения
простых.
Самый характер соединения Ломоносов мыслил не как простое сложение
составных элементов. Он подчеркивал, что природа новых образований зависит
не только от того, какие элементы входят в эти образования (корпускулы), но
и от того, каков характер связи между элементами. Ломоносов, приняв
гипотезу о вращательном движении молекул-корпускул, вывел ряд следствий:
1. Частицы-корпускулы имеют шарообразную форму.
2. При более быстром вращении частиц теплота увеличивается, а при
более медленном – уменьшается.
3. Горячее тело должно охлаждаться при соприкосновении с холодным и,
наоборот, холодные тела должны нагреваться вследствие ускорения
движения при соприкосновении.
Ломоносов критиковал теорию теплорода (или флогистона – не имеющей
массы невесомой жидкости), которую он считал возвратом к представлениям
древних об элементарном огне.
По мысли Ломоносова, упругость газов (воздуха) является свойством
коллектива атомов. Сами атомы «должны быть телесными и иметь продолжение»,
форма их «весьма близка» к шарообразной.
Воззрения на теплоту как форму движения мельчайших «нечувствительных»
частиц высказывались еще в XVI в. Бэконом, Декартом, Ньютоном, Гуком. Эту
же идею разрабатывал и М. Ломоносов, однако он оставался почти в
одиночестве, так как многие его современники были сторонниками концепции
«теплорода». И только позднее Дэви и затем Юнг и Мор доказали, что теплота
является формой движения и что следует рассматривать теплоту как
колебательное движение частиц материи. Последующими работами Майера,
Джоуля, Гельмгольца был установлен закон сохранения и превращения энергии.
Атомно-молекулярное учение о материи лежало в основе многих физических
и химических исследований на всем протяжении истории науки. Со времени
Бойля оно стало служить химии и было положено Ломоносовым в основу учения о
химических превращениях.
Итальянский ученый Э. Торричелли (1608-1647) доказал существование
атмосферного давления. Французский математик и физик Б. Паскаль (1623-1662)
открыл закон: давление, производимое на поверхность жидкости внешними
силами, передается жидкостью одинаково во всех направлениях.
Вместе с Г. Галилеем и С. Стевиным Блез Паскаль считается
основоположником классической гидростатики. Он указал на общность основных
законов равновесия жидкостей и газов. В 1703 г. немецкий ученый Г. Шталь
(1659-1734) сформулировал теорию, точнее, гипотезу о природе горючести в
веществах.
Английский ученый Р. Бойль (1627-1691) ввел в химию атомистику, это
дало основание Ф. Энгельсу сказать о работах Бойля: «Бойль делает из химии
науку». Голландец X. Гюйгенс (1629-1695) вошел в историю науки как
создатель подтвержденного экспериментами первого научного труда по волновой
оптике – «Трактата о свете»; он был первым физиком, исследовавшим
поляризацию света.
Наука о тепле потребовала точных температурных измерений. Появились
термометры с постоянными точками отсчета: Фаренгейта, Делиля, Ломоносова,
Реомюра, Цельсия.
А. Лавуазье (1743-1794) разработал в 1780 г. кислородную теорию,
выявил сложный состав воздуха. Объяснил горение, тем самым доказав
несостоятельность теории флогистона, который и М. В. Ломоносов исключал из
числа химических элементов.
Работавший в Петербургской академии наук Л. Эйлер (1707-1783)
установил закон сохранения момента количества движения, развил волновую
теорию света, определил уравнения вращательного движения твердого тела.
Американский ученый Б. Франклин (1706-1790) разработал теорию
положительного и отрицательного электричества, доказал электрическую
природу молнии.
Английский физик Г. Кавендиш (1731-1810) и независимо от него
французский физик Ш. Кулон (1736-1806) открыли закон электрических
взаимодействий.
Итальянский ученый А. Вольта (1745-1827) сконструировал первый
источник постоянного тока («вольтов столб») и установил связь между
количеством электричества, емкостью и напряжением. Одним из первых трудов,
посвященных описанию нового источника постоянного тока, была выпущенная в
1803 г. книга русского ученого В. Петрова «Сообщение о гальвано-вольтовых
опытах».
Начало практическим исследованиям электромагнетизма положили работы
датчанина X. Эрстеда, француза А. Ампера, русских ученых Д. М. Велланского
и Э. Ленца, англичанина М. Фарадея, немецкого физика Г. Ома и др.
Крупнейший немецкий ученый Г. Гельмгольц (1821-1894) распространил
закон сохранения энергии с механических и тепловых процессов на явления
электрические, магнитные и оптические. Им был установлен ряд законов,
касающихся газов, заложены основы кинетической теории газов, термодинамики,
открыты инфракрасные и ультрафиолетовые лучи.
М. Фарадей (1791-1867) - английский физик, химик и физико-химик,
основоположник учения об электромагнитном поле, электромагнитной индукции –
открыл количественные законы электролиза.
В 1803 г. английский физик и химик Дж. Дальтон (1766-1844) опубликовал
основополагающие работы по химической атомистике, вывел закон кратных
отношений. Дальтон ввел в науку, в частности в химию, понятие атомного веса
(атомной массы), приняв за единицу вес водорода. По Дальтону, атом -
мельчайшая частица химического элемента, отличающаяся от атомов других
элементов своей массой. Он открыл явление диффузии газов (кстати, явление,
которым примерно через сто лет воспользовались для получения
высокообогащенного урана при создании ядерных бомб).
В XVII–XIX вв. атомы считались абсолютно неделимыми и неизменными
частицами материи. Атомистика в значительной мере носила все еще
абстрактный характер. В XIX в. большой вклад в разработку научной базы
атомистики внесли такие ученые, как Максвелл, Клаузиус, Больцман, Гиббс и
др.
В недрах химической науки родилась гипотеза о строении всех атомов из
атомов водорода. Именно химико-физики ближе всех подошли к пониманию
физического смысла идей атомистики. Они постепенно приближались к выяснению
природы атомизма, а последующие поколения ученых – к пониманию
действительного строения атома и его ядра.
Предыстория познания атомного ядра начинается в 1869 г. с гениального
открытия Д. И. Менделеевым периодического закона химических элементов. Д.
И. Менделеев (1834-1907) был первым, кто попытался классифицировать все
элементы, и именно ему мы обязаны нынешним видом Периодической системы.
Пытаясь охватить все элементы, он вынужден был заключить, что некоторые
места Периодической системы элементов (теперь носящей его имя) не
заполнены. Исходя из положения в таблице и свойств химических элементов,
соседствующих с ними в периодах и группах, он предсказал химические
свойства трех отсутствовавших тогда элементов. Примерно через 10 лет эти
элементы (галлий, скандий и германий) были открыты и заняли свои места в
таблице Менделеева.
Периодический закон стал как бы последней инстанцией, выносящей
окончательный приговор соотношению между химическим эквивалентом и атомной
массой. Так, первоначально бериллий считался трехвалентным с атомной массой
13,5, а индий – двухвалентным с атомной массой 75,2, а благодаря их
положению в таблице были проведены тщательные проверки и уточненные атомные
массы стали равными 9 и 112,8 соответственно. Урану сначала приписывали
атомную массу, равную 60, затем исправили на 120, однако периодический
закон показал, что значение атомной массы урана 240.
Периодическая система элементов стала в конце прошлого века памятником
упорству, труду и аккуратности в экспериментальной работе. В Периодической
системе Менделеева нашли отражение сложность структуры атома и значимость
ранее неизвестных основных характеристик атомного ядра – его массового
числа А
|